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PREFACE 
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submitted  to  and  approved  by  the  Graduate  Faculty  of  the  School  of  Engineering, 

University  of  Pittsburgh,  September, 1967. This   research  was d i r ec t ed  by 

h i s  Major  Advisor, Dr. William G. Vogt, Associate   Professor  of E l e c t r i c a l  

Engineer ing  and  Pr incipal   Invest igator  of the   g ran t .   Pa r t  11, '*Contraction 

Groups  and Equivalent  Noms," by William G. Vogt,  Elartin M. Eisen and Gabe R. 

Buis   presents   fur ther   extensfons  of  some of t he   r e sea rch   r epor t ed   i n   Pa r t  I. 
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PART I 

LYAPUNOV  STABILITY THEORY AND THE STABILITY OF SOLUTIONS 

TO PARTIAL  DIFFERENTIAL  EQUATIONS 

Gabe Rinse Buis 
. Department  of Electrical Engineering 

Universi ty   of   Pi t tsburgh 
I 

ABSTRACT 

Lyapunov s t a b i l i t y   t h e o r y  i s  gene ra l i zed   t o  semi-groups  and  groups  of 

l i nea r   ope ra to r s  i n  Hilber t   spaces .  The ex is tence  of a Lyapunov func t iona l  

is s u f f i c i e n t   f o r   t h e   a s y m p t o t i c   s t a b i l i t y  of semi-groups  and  necessary  and 

s u f f i c i e n t   f o r   t h e   a s y m p t o t i c   s t a b i l i t y  of  groups,  This  theory is applied 

t o  a class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s ,   y i e l d i n g   s t a b i l i t y   c o n d i t i o n s  

which are mathematically  rigorous. 
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SUMMARY 

Lyapunov's s t a b i l i t y   t h e o r y   h a s  become ve ry   impor t an t   i n   t he   s t ab i l i t y  

ana lys i s  of so lu t ions   to   o rd inary   d i f fe ren t ia l   equa t ions .  Its extension  to  

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   h a s   b e e n   r e s t r i c t e d   t o  a few sca t t e red  

applications  which  generally  lack  mathematical   r igor.  The  complex  mathemat- 

ical  na tu re  of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  makes extension of t h e   s t a b i l i t y  

t h e o r y   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   v e r y   d i f f i c u l t .  The objec t ive  of 

t h i s   d i s s e r t a t i o n  is to   develop a mathematically  r igorous Lyapunov s t a b i l i t y  

theo ry   fo r  a class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  

The approach  taken  to   this   problem is that   of   general iz ing Lyapunov's 

Direct Method fo r   o rd ina ry   d i f f e ren t i a l   equa t ions   t o  a class of  operator 

d i f fe ren t ia l   equa t ions .   This   genera l iza t ion  is based  on  the  fundamental 

s o l u t i o n   s t r u c t u r e  of  groups  and  semi-groups,  which is n o t   r e s t r i c t e d   t o  

ord inary   d i f fe ren t ia l   equa t ions .  

This l eads   to   the   formula t ion   of   suf f ic ien t   condi t ions  on an  operator 

t o   g e n e r a t e   s t a b l e  o r  asymptotically  stable  semi-groups  and  necessary  and 

su f f i c i en t   cond i t ions  on an opera tor   to   genera te   asymptot ica l ly   s tab le   g roups .  

The  semi-group  and  group s t ruc tu res   enab le   one   t o   a s soc ia t e   w i th   t he  

in f in i t e s ima l   gene ra to r  an opera tor   d i f fe ren t ia l   equa t ion .  The derived 

s t a b i l i t y   c o n d i t i o n s   e x t e n d   t h e n   t o   t h e   s t a b i l i t y  of t h e   n u l l   s o l u t i o n  of 

t h i s   d i f f e r e n t i a l   e q u a t i o n .  The generators  of  these  semi-groups  and  groups 

c o n s t i t u t e  a l a r g e  class of  bounded  and  unbounded operators.  

The second  stage is t o   f o r m u l a t e   p a r t i a l   d i f f e r e n t i a l   e q u a t e o n s   i n  

t h e  framework  of t he   ope ra to r   d i f f e ren t i a l   equa t ions .   S t a r t i ng   w i th  a formal 

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r ,   d i s t r i b u t i o n s  are in t roduced   to   def ine   the  
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extended  operator i n  a complete  space. The nex t   s t ep  is t o   a s s o c i a t e  boundary 

cond i t ions   w i th   t he   fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r .   Th i s  is l i m i t e d   t o  

the  so-called  Dirichlet  boundary  conditions,  which are important   for  many 

s t a b i l i t y   i n v e s t i g a t i o n s .  

For   the class o f   s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s   t h e  

domain  and range are formula ted   in  terms of Sobolev  spaces.  Subsequently,  the 

deve loped   s tab i l i ty   theory  is a p p l i e d   t o  a class of evolut ion  equat ions  with 

s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s  and Dirichlet   boundary 

condi t ions ,   g iv ing   suf f ic ien t   condi t ions   for   asymptot ic   s tab i l i ty   o f   the   nu l l  

so lu t ion .  

A similar formulat'ion is g iven   fo r  a class of wave equations. However, 

f o r   t h i s  case the   necessary   and   suf f ic ien t   condi t ions   for   asymptot ic   s tab i l i ty  

, of t h e   n u l l   s o l u t i o n  are establ ished  by  developing a s u i t a b l e  Lyapunov 

Functional.  A t  t h e  same time th is   p roves   tha t   the   so lu t ions   possess   the   g roup  

property.   Various  appl icat ions are given. The s t a b i l i t y   a n a l y s i s  is f u r t h e r  

extended  to  some n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  With the  except ion 

of these  last  r e s u l t s   t h e  emphasis  has  been  on a mathematically  r igorous 

fo rmula t ion   o f   t he   s t ab i l i t y  problem. 

# 
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I. INTRODUCTION 

I n r e c e n t   y e a r s  Lyapunov s t a b i l i t y   t h e o r y   h a s  become an  important  tool 

i n   t h e   s t a b i l i t y   a n a l y s i s  of s o l u t i o n s   t o   l i n e a r  and nonl inear   ordinary 

d i f f e ren t i a l   equa t ions .  The o r i g i n a l  work  of  Lyapunov (I)* has  generated many 

c o n t r i b u t i o n s   t o   t h e   s t a b i l i t y   t h e o r y  of s o l u t i o n s   t o   o r d i n a r y   d i f f e r e n t i a l  

equations  and  has  provided many appl ica t ions .  Two of the  more s igni f icant   ones  

are the  paper  by Kalman and  Bertram(2)  and  the book  by LaSalle and  Lefschetz (3) . 
Where these  contributions  involve  Lyapunov's Direct Method, t h e   c e n t r a l  problem 

becomes the   cons t ruc t ion  of a Lyapunov function.  For  nonlinear  systems  this is 

g e n e r a l l y   v e r y   d i f f i c u l t .  

Although  the  development  of Lyapunov s t a b i l i t y   t h e o r y  and app l i ca t ions  

t o  solut ions  of   ordinary  different ia l   equat ions  has   progressed  rapidly,  i ts  

a p p l i c a t i o n   t o   s o l u t i o n s  of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   h a s  remained 

l imited.   This  is t h e  case d e s p i t e   t h e   f a c t   t h a t  many physical  systems must be 

represented by p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  However, t h e   d i f f i c u l t i e s  

encountered in   app ly ing  Lyapunov s t a b i l i t y   t h e o r y   t o   p a r t i a l   d i f f e r e n t i a l  

e q u a t i o n s   p a r a l l e l   t h o s e   i n   e s t a b l i s h i n g   t h e   e x i s t e n c e  and  uniqueness 

p rope r t i e s   o f   so lu t ions   t o   pa r t i a l   d i f f e ren t i a l   equa t ions .  

Yet s t ab i l i t y   r ema ins  one  of t h e  most important   propert ies  of d i s t r i b u t e d  

parameter  systems. Many o f   t h e   s t a b i l i t y   r e s u l t s   f o r   p a r t i a l   d i f f e r e n t i a l  

equations are obtained  by  using  methods of approximation,  These  methods  might 

n o t   g i v e   s u f f i c i e n t   c o n d i t i o n s   f o r   s t a b i l i t y   e x c e p t   i n   t h e   c a s e  of i n f i n i t e s -  

imally small pe r tu rba t ions .   S t ab i l i t y   can   be   de f ined   i n  many d i f f e r e n t  ways. 

I n   r e f e r e n c e   t o   s t a b i l i t y   t h e o r y  i t  w i l l  be   in te rpre ted   here  as s t a b i l i t y   i n  

*Pa ren the t i ca l   r e f e rences   p l aced   supe r io r   t o   t he l i ae  of t e x t  
r e f e r   t o   t h e   b i b l i o g r a p h y .  
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the  sense  of Lyapunov: a system i s  s a i d   t o   b e   s t a b l e   i f   f o r   s u f f i c i e n t l y  

small i n i t i a l  per turba t ions   the   so lu t ions  remain c l o s e   t o   t h e   o r i g i n a l   s o l u t i o n  

f o r  a l l  f u t u r e  time. The advantages of  Lyapunov's Direct Method over 

approximate  methods are many. Most important,  Lyapunov's Direct Method employs 

the  system  equat ions  direct ly   without   resor t ing  to   approximations.  The  method 

also  a l lows  mathematical   r igor  and i n  pr inciple   the  introduct ion  of   nonl inear-  

ities. 

On the   o the r  hand, t h e r e  i s  the  importance of p a r t i a l   d i f f e r e n t i a l  

e q u a t i o n s   i n   t h e   f i e l d s  of reactor  physics,  hydrodynamics,  magnetohydrodynamics, 

control   processes ,  etc. These f a c t s   c e r t a i n l y   m o t i v a t e   a n   i n v e s t i g a t i o n   o f  

poss ib le  ways t o  extend Lyapunov s t a b i l i t y   t h e o r y   f o r   t h e   s t a b i l i t y   a n a l y s i s  

of s o l u t i o n s   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  The fol lowing  sect ion  gives  

a survey   of   the   s ign i f icant   resu l t s   ob ta ined   so   fa r .   This   survey  shows how 

l imi t ed   t hese   r e su l t s  are. The survey  also  points  out  the  lack  of  mathematical  

r i g o r  in  many of the   appl ica t ions .   This   sec t ion  i s  followed  by a short   out-  

l i ne  of  general  problem areas i n   t h e   s t a b i l i t y   s t u d y  of s o l u t i o n s   t o   p a r t i a l  

d i f f e ren t i a l   equa t ions .  

A. Revie1.J of t h e   L i t e r a t u r e  

Many s t a b i l i t y   r e s u l t s   f o r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  are derived 

by using  approximate  methods. The bas is   for   these   approximate  methods is t h e  

r educ t ion   o f   t he   pa r t i a l   d i f f e ren t i a l   equa t ions   t o  a system  of  ordinary 

differential   equations.   This  can  be  done  by  either  approximating  the model  by 

one  having a f i n i t e  number of  degrees  of  freedom via spatial d i s c r e t i z a t i o n   o r  

by assuming a harmonic time dependence.  The f i r s t  case a l lows   the   appl ica t ion  

of t h e  well-known t echn iques   fo r   ana lyz ing   t he   s t ab i l i t y  of ordinary  differen-  

- 
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t i a l  e q u a t i o n s ;   i n   p a r t i c u l a r ,   f o r   i n f i n i t e s i m a l l y  small pe r tu rba t ions ,  which 

is presented as a j u s t i f i c a t i o n   f o r   t h e   s y s t e m   l i n e a r i z a t i o n .  

I n   t h e  second case a modal a n a l y s i s  is  in   genera l   necessary .  To 

achieve   th i s ,   use  is made of the  Galerkin  process  which i s  based on a trunca- 

t i o n  of t h e  modal  expansion. A l i n e a r i z a t i o n   a g a i n  limits the  amount  of  work 

involved. The use  of t hese  methods is wide-spread  and w e l l  published.  Since 

t h i s  approach  does  not   const i tute   the  subject  of t h i s   t h e s i s ,   r e f e r e n c e  w i l l  

j u s t   b e  made t o   t h e  works by Bolot in  (4y5) and  Eckhaus(6) as t h e  most r ecen t ly  

published  books. 

As d i s t i n c t  from these  approximate  methods,  Lyapunov's  Direct Method 

dea l s   d i r ec t ly   w i th   t he   sys t em of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   w i t h o u t  

resor t ing  to   approximation.  Moreover, i t  is  p o t e n t i a l l y   a p p l i c a b l e   f o r   t h e  

s t a b i l i t y   a n a l y s i s  of  nonlinear  systems. Thus i t  is n o t   s u r p r i s i n g   t h a t  

attmepts  have  been made to   app ly  Lyapunov's Direct Nethod t o   d e r i v e   s u f f i c i e n t  

c o n d i t i o n s   f o r   t h e   s t a b i l i t y  of equ i l ib r ium  so lu t ions  of systems of p a r t i a l  

d i f f e ren t i a l   equa t ions .  A step  toward  applying Lyapunov's Direct Method t o  

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  was made by Ma~sera'~! who extended  this  method 

t o  denumerably in f in i t e   sys tmes  o f   o rd ina ry   d i f f e ren t i a l   equa t ions .  

The a p p l i c a t i o n  of  Lyapunov's Direct Method f o r   t h e   s t a b i l i t y   a n a l y s i s  

of s o l u t i o n s   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   r e q u i r e s  a genera l iza t ion   of  

t h e  method t o   f u n c t i o n   s p a c e s   i n  which a  metric p is defined.  Consequently, 

the  concepts  of s t a b i l i t y  must be   def ined   in  terms of t h i s  metric. A genera l  

s t a b i l i t y   t h e o r y  now based on t h e   e x i s t e n c e  of a Lyapunov func t iona l  is 

es t ab l i shed  by Zubov(8) f o r   t h e   i n v a r i a n t  sets of dynamical  systems ih genera l  

metric spaces. Zubov employs th i s   t heo ry   i n   Chap te r  5 t o   d e r i v e   r e s u l t s   f o r  

sys t ems   o f   pa r t i a l   d i f f e ren t i a l   equa t ions .  

6 
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The most general   type  of  system  that  has  been  considered is of  the  form 
l 

where  u(t,x) is an  n-dimensional  vector  valued  function  defined  over some 

region 51 of an  m-dimensional  Euclidean  space Em. k is a l i n e a r   o r   n o n l i n e a r  

mat r ix   d i f fe ren t ia l   opera t ion   def ined  on 51. To spec i fy   so lu t ions ,  a set of 

boundary  conditions  must  be  given. In addi t ion ,  a so lu t ion  will depend  on 

- 

some i n i t i a l   f u n c t i o n  u (x)  belonging t o  an  n-dimensional  space  of i n i t i a l  

functions.  

-0- 

The appl ica t ion  of Lyapunov s t ab i l i t y   t heo ry   fo r   t he   de t e rmina t ion   o f  

s t a b i l i t y   c o n d i t i o n s   f o r   e q u i l i b r i u m   s o l u t i o n s  of (1-1) i s  a lmost   en t i re ly  

based on the  work  of  Zubov(8).  However, i n  a l l  those cases t h e   v a l i d i t y  of 

t h e   r e s u l t s  depends on the  system  being a dynamical  system, i.e., on t h e   f a c t  

tha t   the   so lu t ions   possess   the   g roup   proper ty ,   o r   to  a somewhat lesser exten t ,  

t h e  semi-group property (t > 0 only). The mathemat ica l   jus t i f ica t ion  of t h i s  

u 

1 
i 
I 

! 

I 

! 

f a c t  is either  extremely  vague  or  omitted.  

Zubov(8) e s t ab l i shes   qu i t e   conc lus ive   r e su l t s   fo r   sys t ems  of the  form 

the  solut ions  of   which  const i tute ,   under   sui table   assumptions,  a dynamical 

system.  Brayton  and  Miranker")  apply h i s   r e s u l t s  t o  e s t a b l i s h   s t a b i l i t y  

condi t ions   for  a nonl inear   system  represent ing  an electrical c i r cu i t ,   w i thou t  

proper ly   ver i fy ing   the   exac t   condi t ions   for  a dynamical  system.  Blodgett (10 1 

takes  a chemical   reactor  model t o   a p p l y  Zubov's r e s u l t s .  

Zubov a l s o  compares t h e   s t a b i l i t y   p r o p e r t i e s  of t h e   t r i v i a l   s o l u t i o n s  

of the  system 
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a us k 

i= 1 
a us 

i a xi a t  - = f s  (ul, ... ,u ) + 1 b - (~=1,2,.. . ,n) n 

and the   re la ted   sys tem of o rd ina ry   d i f f e ren t i a l   equa t ions  

duS - =  
d t  f s  (ul, ..., un) (~=1,2, . . . ,n) 

H e  shows t h a t   t h e   a s y m p t o t i c   s t a b i l i t y  of t he  t r iv ia l  so lu t ion  of (1-4) assures  

the   a sympto t i c   s t ab i l i t y  of t h e  t r iv ia l  so lu t ion  of  (1-3). A similar r e s u l t  

relates the   s t ab i l i t y   behav io r  of the  equi l ibr ium  of   the  system  of   par t ia l  

d i f f e ren t i a l   equa t ions  of  higher  order 

+. . .+ a 
m u  

”m a1 a x l  ... a 
X m 

j= l  
t o   t h e   s t a b i l i t y  of the  equi l ibr ium of the  system 

- = A u .  d t  - - 
The na ture   o f   the   der ived   resu l t s  is very   t heo re t i ca l  and o f t en  

d i f f i c u l t   t o  implement i n   p r a c t i c a l   a p p l i c a t i o n s .  Hsu appl ied Zubov’s 

r e s u l t s   t o  a nuclear  reactor  system,  but  does  not  verify  the  dynamical  system 

proper t ies .  Wang (12) i n  a kind  of  survey  paper,   considers  those  operators 

which are in f in i t e s ima l   gene ra to r s  of  semi-groups. However, i n   t h i s  case, 

the   condi t ions  are o n l y   s u f f i c i e n t   f o r   s t a b i l i t y .  

Another class of systems  frequently  encountered is of the  form 
r) 

with ” u( t ,x )  and L as under  (1-1).  Although (1-7) can  be  reduced  to  the form 

(I- l ) ,  it has   the   d i s t inc t   advantage   tha t   the  Lyapunov func t iona l   can   readi ly  

be  der ived  f rom  the  total   system  energy,   again  giving  only  suff ic ient   condi-  

- 
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i t i ons   fo r   s t ab i l i t y .   Fos t   o the r   con t r ibu t ions  are not  as general  as the  ones 

above ,   bu t   re f lec t  more d i r e c t   a p p l i c a t i o n s   t o   s p e c i f i c  problems. 

Elovchan (I3) considered  the  equation I 

with  the  boundary  conditions: 

u = -  - 
2 - 0 f o r  x=O and x=l. 

a x  

By de f in ing   t he  metric p i n  a s u i t a b l e  manner he  i s  a b l e   t o   v e r i f y   r e s u l t s  from 
t 

the   theory of v ib ra t ions  of p l a t e s  by taking as Lyapunov funct ional :  
I I 

V(U) = (u:~ + a u 2 2  + u ) d x. 
0 X t 

Simi la r ly  Movchan ( I 4 )  v e t i f i e s  classical s t a b i l i t y   r e s u l t s   f o r  a system of 

hinged  rectangular  plates  under  compression,  the  deflection  of  which,  u(x,y,t) ,  

is given by the  dimensionless  equation: 

with  boundary  conditions: 

2 a u  

ax  3 Y2 

2 
0 a t  x=O,  x=l, u = a - = O a t y = 0 , y = 1 .  u = - =  

2 

Wang (I5) s t u d i e s   t h e   s t a b i l i t y  of a s impl i f i ed   f l ex ib l e   veh ic l e   w i th  a 

dimensionless  equation  of  perturbed  motion  about its equi l ibr ium state as 

given by c) 

(1-10) 

and  boundary  conditions 
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But he  does  not  consider  the  existence  problems of the  solut ions  involved.  

Parks (I6) app l i e s  Lyapunov's Direct Method t o   t h e   p a n e l   f l u t t e r  

problem. The equation i n  dimensionless  form is given  by 

and 

2 4 2 a u  

a t   a t  a x  a x  a x  
U T +  - a a u  + d - - f - + t f - = o   3 u   a u  

boundary  conditions 
r )  

(1-11) 

u = - =  0 f o r  x = 0 and x = 1. a LU 

a x  2 

In   these   appl ica t ions   an   impor tan t   ro le   in   der iv ing   the   suf f ic ien t  

c o n d i t i o n s   f o r   s t a b i l i t y  i s  played by i n t e g r a l   i n e q u a l i t i e s .  The r e s u l t s  

obtained are presented  without  mathematical  rigor.  Another  deficiency is the  

gene ra l   i n t e rp re t a t ion   o f   t he   cond i t ions   ob ta ined   fo r   s t ab i l i t y .  

I n   o r d e r   t o   d i s c u s s   s t a b i l i t y   i n  a meaningful  sense i t  is o f t en  

n e c e s s a r y   t o   p u t   r e s t r i c t i o n s  on t h e   i n i t i a l  states. Although  Volkov  (17) 

imp l i ed   t h i s   i n   an  earlier work, t he   i dea  of introducing a second metric f o r  

this   purpose seems t o  have  been  originated by Movchan'"). S t a b i l i t y  i s  then 

d e f i n e d   i n  terms of the  two metrics, ra ther   than  one. Wang u s e s   t h i s  

concept   in  a s t a b i l i t y   a n a l y s i s  of elastic and aeroelast ic   systems.  

The work of Lakshmikantham  (20) is c l o s e l y   r e l a t e d   t o  Zubov's results. 

A p rac t i ca l   app l i ca t ion   can   be   found   i n  Wei's paper (21) i n  which t h e   s t a b i l i t y  

of a system of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   d e s c r i b i n g   t h e   f i r s t   o r d e r  

chemica l   reac t ion   in   the   p resence  of a c a t a l y s t  is  analyzed.  This  system  can 

be  reduced  to  a p a i r  of i d e n t i c a l   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  of the  form 

a u  a u Bu (1-u) 

a t  a x  1 + B(1-u] 

2 
+2 u exp -=" 

2 (1-12) 
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with 0 f - x 2  1 and  boundary  conditions: 

! 

a 2  
a x  = 0 and u ( t , l )  = I. 

Afte r   l i nea r i z ing  (1-12) the  Eucl idean metric has  been  taken as a Lyapunov 

funct ional .  

This survey of a l l  t h e   s i g n i f i c a n t   c o n t r i b u t i o n s   i n d i c a t e s   t h a t  many 

problems  concerning  the  application  of Lyapunov s t a b i l i t y   t h e o r y   t o   p a r t i a l  

different ia l   equat ions  remain  unsolved.  In t h e  next sect ion  the  problems  in-  

volved will be   ana lyzed   in  more d e t a i l ,  and t h e  most l og ica l   app roach   t o  

fu r the r   app l i ca t ions  w i l l  be   es tabl ished.  

B. General  Problem Areas 

The l i t e r a t u r e   s u r v e y  shows t h a t   t h e  main t h e o r e t i c a l   c o n t r i b u t i o n   t o  

Lyapunov s t a b i l i t y   t h e o r y   f o r   s o l u t i o n s   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  is 

given by  Zubov(8).  The impor t an t   r e s t r i c t ion  on h i s   r e s u l t  is the  requirement 

t ha t   t he   sys t em  o f   pa r t i a l   d i f f e ren t i a l   equa t ions   de f ines  a dynamical  system. 

This   impl ies   tha t  e L of (1-1) m u s t  generate  an  operator  which  possesses  the 

group  property. However, many p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s   c a n  

only  be  defined as the   i n f in i t e s ima l   gene ra to r s  of  semi-groups.  Thus t h e  

"group  property" will o n l y   b e   s a t i s f i e d   f o r  t 2 - 0. S i n c e   s t a b i l i t y  is usua l ly  

concerned with the   p rope r t i e s  of p o s i t i v e   h a l f   t r a j e c t o r i e s ,  it seems n a t u r a l  

t h a t  a Lyapunov s tab i l i ty   theory   can   be   formula ted   for   sys tems  having   on ly   the  

semi-group  property.  This  suggests the development of a g e n e r a l   s t a b i l i t y  

t heo ry   fo r   t he  class of operators   generat ing a semi-group. This must  be 

followed by the  formulat ion of - L i n  terms of t h i s  class of  operators  and  where 

p o s s i b l e   t h e   r e s u l t s  eo obta ined   should   be   re la ted   to   the   ac tua l   boundary  

value problem. 
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After   so lv ing   the   p roblem  for   the   the- invar ian t  case the re  arises the  

p o s s i b i l i t y  of   extending  the  resul ts   to   the  t ime-invariant  case. 

Another  extension  can  be  directed  towards  the  development of a 

Lyapunov s t a b i l i t y   t h e o r y   f o r   n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  The 

formulation of a Lyapunov s t a b i l i t y   t h e o r y   f o r  semi-groups  appears a n a t u r a l  

start f o r   r e s e a r c h   i n   t h i s   f i e l d .   T h i s  is because   the   in f in i tes imal   genera tors  

of  contraction  semi-groups,  which are s t a b l e ,  are the   l i nea r   d i s s ipa t ive   ope ra -  

t o r s .  The na tura l   ex tens ion  of t h e s e   l i n e a r   d i s s i p a t i v e   o p e r a t o r s   f o r   t h e  

nonlinear case are t h e  monotone operators(22) .  The question arises, the re fo re ,  

i f  i t  is poss ib l e   t o   ex t end   t he  Lyapunov s t ab i l i t y   t heo ry   fo r   sys t ems   w i th  

d i s s ipa t ive   ope ra to r s   t o   i nc lude  monotone operators  as w e l l .  

Many of t h e  above  problems  touch on research areas i n  mathematics  which 

are current ly   being  explored.  It is expected  that  many of t h e  above  problems 

w i l l  provide  an  emerging  f ield of f u t u r e   r e s e a r c h   i n   s t a b i l i t y   t h e o r y .  
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11. STATEMENT OF THE PROBLEM 

A. Formal P a r t i a l   D i f f e r e n t i a l   E q u a t i o n s  

Many of the  physical   problems  that  are formulated  by  par t ia l   d i f feren-  

t i a l  equations  can  be  described  formally by the  general   equat ion 

(11-1) 

where  u(t,x) is an n-vector  function  and L i s  a matr ix  whose elements are 
" - 

l i n e a r   o r   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r s   s p e c i f i e d  on a bounded connected 

open subset  R of  an  rn-dimensional  Euclidean  space, E . The parameters  of & m 

can be  space  and time dependent. 

I n   o r d e r   t o   s p e c i f y   s o l u t i o n s   t o  (11-1) a set of   addi t iona l   cons t ra in ts  

or  boundary  conditions  must  be  given by 

" H u ( t , x ' )  - = 0 x' E aR (11-2) 

where - H is a matr ix  whose elements are s p e c i f i e d   d i f f e r e n t i a l   o p e r a t o r s  and 

a Q is the  boundary of Q, n = Q + a R. 
- 

In addi t ion   to   the   boundary   condi t ions ,   so lu t ions   to  (11-1) will 

depend on some i n i t i a l   f u n c t i o n s  %(x).  It will be assumed f o r   t h e  moment 

that ,   g iven some i n i t i a l   f u n c t i o n  %(x) belonging  to  some normed linear space 

H, it can  be shown t h a t   s o l u t i o n s   t o  (11-1) and (11-2) e x i s t  and  belong t o  H. 

A s o l u t i o n   t o  (11-1) and (11-2) w i l l  be  designated as u ( t , x ; a ( x )  ,to), t h a t  is, 

t h e   s o l u t i o n   s t a r t i n g  a t  to and w i t h   i n i t i a l   c o n d i t f o n s  u (x>, u(to,x;s(x) ,  td= 

- 

-0 - - 
a (5) 0 

The s o l u t i o n s   t h a t  are of p a r t i c u l a r   i n t e r e s t   i n   s t a b i l i t y   s t u d i e s  are 

the   equi l ibr ium  so lu t ions ,  u (x). The equi l ibr ium  solut ions  can  be  def ined 
-eq - 

as : 
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Defin i t ion  11-1. An equi l ibr ium  solut ion,  u (x) is a s o l u t i o n  of (11-1) and 
-eq  

a %  (t,x) - 
(11-2) such   tha t  a t  = 0 f o r  a l l  t 2 t and a l l  XER. Thus - - 0  - 
- u(t,x;u (z),to) = ~ ~ ( 5 )  f o r  a l l  t 2 to. This  is the  same as determining  the - -eq - 

-eq - u (x) such   tha t  L u (x) = 0 and H u (x!) = 0, x'a R. " e q  - - - e q  - 
Stab i l i t y   can   be   de f ined   i n  many d i f f e r e n t  ways;  however, s t a b i l i t y  

w i l l  be   def ined   here   in   the   sense  of Lyapunov. 

Def in i t i on  11-2. The equi l ibr ium  so lu t ion  u (x)  of (11-1) and  (11-2) is sa id  

t o   b e   s t a b l e   i n   t h e   s e n s e  of  Lyapunov i f   f o r   e v e r y  real number E > 0, t he re  
-eq - 

Defin i t ion  11-3. The equi l ibr ium  solut ion u (x) of (11-1) and (11-2) is s a i d  
-eq - 

t o   be   a sympto t i ca l ly   s t ab le   i f  i t  is s t a b l e  and i n   a d d i t i o n  I lu( t ,x;u - (x) t  )- -"",O 

It fo l lows   f rom  the   l i t e ra ture   survey   tha t  many authors  have  investiga- 

ted  problems similar t o   t h e  one  formulated  above  using  Lyapunov's Direct Nethod. 

I n  many cases no   a t t en t ion   has   been   pa id   t o  the quest ion  of   exis tence of solu- 

t i o n s   t o  (11-1) and  (11-2).  Furthermore  Lyapunov's Direct Method for   o rd inary  

d i f f e r e n t i a l   e q u a t i o n s  is based  on  the  propert ies  of  bounded o p e r a t o r s   i n  

f in i t e   d imens iona l   space .   In   so lv ing   t he   s t ab i l i t y  problem f o r  (11-1) -(II-2), 

i t  is general ly  assumed t h a t   t h e   f u n c t i o n s  are defined on the  proper  spaces,  

i.e., the  funct ions  possess  enough  continuous  derivatives. It is furthermore 

assumed  that: a l l  ope ra t ions   o f   d i f f e ren t i a t ion ,   i n t eg ra t ion ,  etc., can  formally 

be  carr ied  out   and  that   the   funct ions  resul t ing  f rom  these  operat ions s t i l l  

be long   to  the defined normed linear space, i.e., t h a t   t h e   s p a c e  is complete. 

I n   o r d e r   t o   s a t i s f y  a l l  these  requirements  and thus  conduct a r igorous 

i n v e s t i g a t i o n  of t h e   e x i s t e n c e  and s t a b i l i t y   p r o p e r t i e s  of s o l u t i o n s   t o  (11-1) 
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and (11-Z), the  formulation  of  the  problem must be   ca re fu l ly   s c ru t in i zed .   Th i s  

i nves t iga t ion  makes extensive use of the  concepts   of   funct ional   analysis ,  i n  

par t icu lar ,   the   ana lys i s   o f   func t ions   def ined   in   comple te   spaces .   For   th i s  

purpose  the formal p a r t i a l   d i f f e r e n t i a l   e q u a t i o n  (11-l), t h a t  is, without 

boundary  conditions, is considered  and  the  propert ies   of   the   formal   par t ia l  

d i f f e r e n t i a l   o p e r a t o r  are s tudied  i n  spaces   that   possess   the necessary 

d i f f e r e n t i a b i l i t y   p r o p e r t i e s .  As a p a r t  of the  required  technique,  i t  is 

necessary   to   comple te   the   spaces   o f ,d i f fe ren t iab le   func t ions .   For   th i s   purpose  

i t  is necessary   to   in t roduce   su i tab ly   def ined   genera l ized   der iva t ives .  

Once th i s   p rocess  is ca r r i ed   ou t  (11-1) can  be  interpreted as a genera l  

opera tor   d i f fe ren t ia l   equa t ion .  A Lyapunov s t a b i l i t y   t h e o r y  w i l l  be  developed 

f o r  a certain class of  operator  differential   equations,   which is analogous  to  

Lyapunov's Direct Method fo r   o rd ina ry   d i f f e ren t i a l   equa t ions .  The formal 

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  is then a r e s t r i c t i o n  of a d i f f e r e n t i a l   o p e r a t o r  

from t h i s  class. F ina l ly   t he re   r ema ins   t he   p rob lem  o f   r e l a t ing   t he   s t ab i l i t y  

p rope r t i e s  of t h e   f o r m a l   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   t o   t h o s e   o f   t h e   o r i g i n a l  

boundary  value  problem. I n   t h e   n e x t   s e c t i o n   t h e   g e n e r a l   o p e r a t o r   d i f f e r e n t i a l  

equation is evaluated. 

B. Evaluat ion  to   Operator   Different ia l   Equat ions 

Lyapunov's Direct Method for   f ini te   dimensional   systems  of   ordinary 

d i f f e ren t i a l   equa t ions  is based on cer ta in   fundamental   propert ies   of   the  

so lu t ions ,  which  a11.sys terns of f in i t e   d imens iona l   o rd ina ry   d i f f e ren t i a l  . 

equat ions  have  in  common. S imi l a r   p rope r t i e s   ho ld   fo r   ce r t a in  classes of 

ope ra to r   d i f f e ren t i a l   equa t ions   t o  which c e r t a i n  classes of f o r m a l   p a r t i a l  

different ia l   equat ions  belong.  
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For   the   charac te r iza t ion  of t he   ope ra to r   d f f f e ren t i a l   equa t ion  

consider  

d x  
-I 
d t  - - A x  (11-3) 

L e t  (11-3) be   va l id   fo r  a l l  - XEX where X is  some n-dimensional  Euclidean  space, 

En, and - A a l inea r   ope ra to r  on X i n t o  X. Thus, - A i s  a bounded l inea r   ope ra to r .  

Then (11-3) becomes a s t a t i o n a r y  linear o rd ina ry   d i f f e ren t i a l   equa t ion   fo r  

which a matrix representa t ion  is obtained  by  choosing a b a s i s   i n  E . A n 

Lyapunov s tab i l i ty   theory   has   been   deve loped   for   these   equat ions .   This   theory  

i s  based on the   p rope r t i e s  of bounded opera tors   in   f in i te   d imens iona l   spaces .  

If X is  a genera l  normed l inear   space ,   then  - A no longer  need  have  these 

p r o p e r t i e s ;   i n   f a c t ,  - A might  be unbounded  and (11-3) should  be  specif ied as 

dx - - =  
d t  - - A x (ZED (A> - X; - A : D (A) + R<A)C X) (11-4) - -  

where D(A) - is the  domain  of - A and ??(A) - is the  range of A.  For  these unbounded - 
opera tors  on genera l   func t ion  spaces,a mathematical  theory  has emerged i n  which 

the   p rope r t i e s  of t he   so lu t ions  are studied  on  one-parameter  families of 

bounded l i n e a r   o p e r a t o r s ,   t h e  semi-groups  and  groups. 

Lyapunov's Direct Method fo r   o rd ina ry   d i f f e ren t i a l   equa t ions   r equ i r e s  

the   cons t ruc t ion  of a Lyapunov function.  For a gene ra l   ope ra to r   d i f f e ren t i a l  

equat ion (11-4) t h i s   r e q u i r e s   t h e   c o n s t r u c t i o n  of a Lyapunov func t iona l .  The 

s t a b i l i t y   p r o p e r t i e s   f o l l o w  from an evaluat ion of the  time de r iva t ive  of t he  

Lyapunov func t iona l   a long   the   so lu t ions .   For   the  Lyapunov func t iona l   t he  

time de r iva t ive  must formally  be  def ined,  and the re  is a p o s s i b i l i t y   t h a t  i t  

does   no t   ex i s t   fo r  a l l  EEX. In   t he   con tex t  of  semi-groups t h i s  time de r iva t ive  

can  easi ly   be  der ived.  
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In   the   fo l lowing  it should  be clear from the  context  whether x must  be - 
i n t e rp re t ed  as an  element of t h e  normed l inea r   space  X ( in   t he   gene ra l  

theoretical   development)  or  whether - x is a space   var iab le  i n  Em, the  space  on 

which t h e   d i f f e r e n t i a l   o p e r a t o r  is defined. 

A l a r g e  class o f   fo rma l   l i nea r   s t a t iona ry   pa r t i a l   d i f f e ren t i a l   equa t ions  

(11-5) 

where $2 is  a bounded  connected  open  subset of an  m-dimensional  Euclidean  space, 

Em, and ” L(x) is a f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  on the   space   var iab le  

” x is subsummed i n  a fami ly   o f   genera l   opera tor   d i f fe ren t ia l   equa t ions  (11-4) 

which  generate a semi-group o r  a group.  Thus, the   opera tor  - A i n  (11-4) is an 

extension  of  L(x) i n  (11-5)  and coincides  with  L(x) when the   func t ions  u are 

s u f f i c i e n t l y  smooth. 

” ” - 

The main  problem is t o  deduce  from  (11-5) the  form  of  the  space X, 

t he   l i nea r   ope ra to r  &, t h e  domain D(A) - and the  range R(A) - . T h i s   i n   i t s e l f  is 

not  always  easy. 

C. A S t a b i l i t y  Theory 

In   t he   p reced ing   s ec t ions   t he   d i f f i cu l t i e s  of e s t ab l i sh ing  a Lyapunov 

s t a b i l i t y   t h e o r y   f o r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  (11-1) and (11-2) have 

been  discussed. On t h e   o t h e r   h a n d ,   t h e   g e n e r a l   l i n e a r   o p e r a t o r   d i f f e r e n t i a l  

equation (11-4) can  be  considered as a genera l iza t ion  of a system  of linear 

o rd ina ry   d i f f e ren t i a l   equa t ions   fo r  which a Lyapunov s t a b i l i t y   t h e o r y   e x i s t s .  

I n   o r d e r   t o   d e r i v e  a Lyapunov s t a b i l i t y   t h e o r y  which  can  rigorously de appl ied 

t o  a class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s ,   t h e   s t a b i l i t y   p r o b l e m  will be 

formulated as follows: 
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1. Develop a Lyapunov s t a b i l i t y   t h e o r y   f o r  a class of operator  

d i f f e r e n t i a l   e q u a t i o n s  (11-4) similar t o  Lyapunov's Direct Method fo r   o rd ina ry  

d i f f e r e n t i a l   e q u a t i o n s .  

2. Extend t h e   f o r m a l   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  t o  opera tor  

equations on complete  function spaces i n  such a way t h a t   a l l  mathematical 

operat ions  can  be  carr ied  out   r igorously.  

3. Associate   with  the  formal  par t ia l  d i f f e r e n t i a l   o p e r a t o r ,  s o  defined, 

a boundary  value  problem  and  give a formulation of t he  problem i n  terms of the  

g e n e r a l   o p e r a t o r   d i f f e r e n t i a l   e q u a t i o n   f o r  which t h e   s t a b i l i t y   t h e o r y  is 

developed. 

4. Give app l i ca t ions  of t he   deve loped   s t ab i l i t y   t heo ry   t o   spec i f i c  

boundary  value  problems. 

Even though the  scope of these  problems is l i m i t e d   t o  a small class of 

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s ,  which are l i n e a r  and s ta t ionary ,   they  

c o n s t i t u t e  one  of t h e   f i r s t  developments  of a mathematically  rigorous  approach 

t o   t h e   s t a b i l i t y   i n v e s t i g a t i o n s  of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s .  

D. Cont r ibu t ions   to   the  Problem 

The r e sea rch   conce rn ing   t he   s t ab i l i t y   p rope r t i e s  of t h e   s o l u t i o n s   t o  

c e r t a i n  classes of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  was ca r r i ed   ou t  as p a r t  of 

a research  project   sponsored by the  National  Aeronautics and  Space  Administra- 

. t ion  under Grant Number NGR 39-011-039 wi th   the   Univers i ty  of Pi t tsburgh.  

D r .  William G. Vogt, Associate   Professor  of Electrical Engineering and 

P r i n c i p a l   I n v e s t i g a t o r   f o r   t h i s   p r o j e c t   o r i g i n a t e d   t h i s   r e s e a r c h   e f f o r t  and 

i n   t h e   c o u r s e  of the   research   has   cont r ibu ted   cons iderably   to   the  resul ts  

r e p o r t e d   i n   t h i s   t h e s i s .  
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The approach   to   the   s tab i l i ty   p roblem and t h e   r e s u l t s   o b t a i n e d  were 

developed i n  the  course  of numerous discussions  between Dr. Vogt  and t h e  

au thor .   S ince   the   resu l t s   repor ted  are t o  a l a rge   ex ten t -ob ta ined  as a j o i n t  

e f f o r t ,  i t  is d i f f i c u l t   t o   i s o l a t e  many s i n g l e   r e s u l t s  as p r i n c i p a l l y  D r .  Vogt's 

o r   the   au thor ' s .  Some of these  are indica ted  below. 

Most of   the   research   car r ied   ou t  so f a r  on th i s   sub jec t   l acked  a s o l i d  

mathemat ica l   jus t i f ica t ion ,  The init i 'al  e f f o r t s  by the  author   gave a 

ve r i f i ca t ion ,   u s ing  Lyapunov s t a b i l i t y   t h e o r y ,  of s t a b i l i t y   - r e s u l t s   o b t a i n e d  

by  Eckhaus ( 6 )  who used  approximate  methods.  These  results were eventual ly  

e s t a b l i s h e d   r i g o r o u s l y   f o r   t h e   l i n e a r  case ( the case f o r  which the   r e su l t s   o f  

Eckhaus are certain to   ho ld )  and are given in Chapter IX. 

The important   contr ibut ion a t  t h i s   s t a g e  ~7as the   in t roduct ion  of t he  

concept  of  equivalent  inner  products by the   author .  However, i t s  use was 

pr imari ly  aimed a t  ob ta in ing   s e l f - ad jo in tness   p rope r t i e s   fo r   t he   fo rma l  

operator  involved and improving  the estimates obtained by the   use   o f   in tegra l  

- i n e q u a l i t i e s .  The abs t r ac t ion  of t h i s   n o t i o n  and i ts  f ina l .   implementa t ion   in  

a s t a b i l i t y   t h e o r y   f o r   d i s s i p a t i v e   o p e r a t o r s  is l a rge ly   due   t o  D r .  Vogt. 

Lyapunov's Direct Method for   systems of o rd ina ry   d i f f e ren t i a l   equa t ions  

is based on some fundamental   properties,  i.e., group  propert ies ,  of the   so lu-  

t ions .  A f i r s t   o b s e r v a t i o n  showed tha t   th i s   g roup   proper ty  is no t   l imi t ed   t o  

f in i te   d imens iona l   sys tems  of   o rd inary   d i f fe ren t ia l   equa t ions ,   bu t  is common 

t o   a l a r g e r  class of  systems.  Moreover, a still l a r g e r  class of  systems 

possesses   the more genera l  semi-group  property.  This  led t o  a formulation  of 

a Lyapunov s t ab i l i t y   t heo ry   fo r   g roups  and  semi-groups. The s t a b i l i t y  

proper t ies  are i n   t h i s  case d i r ec t ly   coup led   t o   t he   t r a j ec to ry   s t ruc tu re ,  i.e., 

the   so lu t ions .  The main goal  became t o   e x p r e s s   t h e   c o n d i t i o n s   f o r   t h e  
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s t a b i l i t y  of t h e   s o l u t i o n s   i n  terms of the  operator   generat ing  the  group  or  

semi-group--in par t icular ,   those  generat ing  contract ion  groups  or  semi-groups. 

A l a r g e  class of such  operators is formed  by t h e  bounded and unbounded 

d i s s ipa t ive   ope ra to r s .  

D i s s i p a t i v i t y ,  in a p a r t i c u l a r  case, i s  an  inner  product  property  while 

s t a b i l i t y  is a norm property.   This  implies a Hi lbe r t  space theory.  Since  the 

s t a b i l i t y   p r o p e r t i e s  are invariant   under   equivalent  norms, the   in t roduct ion  of 

t he   p r inc ip l e  of equivalent  inner  products  mentioned  above is c r u c i a l   t o   l i n k  

t h e   d i s s i p a t i v i t y   p r o p e r t y   t o   t h e   s t a b i l i t y   p r o p e r t i e s .  Two inner   products  

are e q u i v a l e n t   i f  and o n l y   i f   t h e i r  induced norms are equivalent .  

This  subsequently  allows  the  formulation of su f f i c i en t   cond i t ions  on 

an   ope ra to r   t o   gene ra t e   s t ab le  o r  asymptot ica l ly   s tab le  semi-groups  and 

necessary   and   suf f ic ien t   condi t ions  on an   ope ra to r   t o   gene ra t e   s t ab le   o r  

asymptot ical ly   s table   groups.  D r .  Vogt proved  an  important norm property of 

groups  which is used in   t he   p roo f  of t he  las t  statement.  

The  semi-group  (group) s t ruc tu re   enab le s  one to   formulate   an  operator  

d i f f e r e n t i a l   e q u a t i o n   w i t h  its inf in i tes imal   genera tor .  The d e r i v e d   s t a b i l i t y  

cond i t ions   ex tend   t o   t he   s t ab i l i t y  of t h e   n u l l   s o l u t i o n s  of t h i s   d i f f e r e n t i a l  

equation. The s t a b i l i t y  theorems are given  in  Chapter V. 

The cond i t ions   t o   be  imposed on the   opera tor  do not  restrict the  class 

of o p e r a t o r s   t o  bounded operators .  Thus a s t a b i l i t y   t h e o r y  is es tab l i shed  f o r  

a l a r g e  class of opera tor   d i f fe ren t ia l   equa t ions   def ined  in a Hilbert   space.  

The second  stage is t o   f o r m u l a t e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   i n   t h e  

framework  of t he   ope ra to r   d i f f e ren t i a l   equa t ions .  A kind  of  synthesis  proced- 

u re  is used  here. 

20 



Star t ing   ou t   wi th  a f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r ,   t h e   f i r s t  

requirement is  tha t   the   ex tended   opera tor   be   def ined   in  a complete  space.  This 

is done  by in t roduc ing   d i s t r ibu t ions .  The nex t   s t ep  i s  to   associate   boundary 

cond i t ions   w i th   t he   fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r .   I n   t he   con tex t  of 

t h e   t h e s i s   t h i s  is l imi ted   to   the   so-ca l led   Di r ich le t   boundary   condi t ions ,  

which are important   for  many s t a b i l i t y   i n v e s t i g a t i o n s .  

The class of f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s  i s  l i m i t e d   t o   t h e  

s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s .  The  domain  and range of t he  

extended  operator are subsequent ly   formulated  in  terms of Sobolev  spaces.  In 

Chapter V I I ,  t h e   s t a b i l i t y   t h e o r y  i s  app l i ed   t o  a class of  evolution  equations 

w i t h   s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s  and D i r i c h l e t  boundary 

conditions.  

A similar formulation  of a class of wave equations is  presen ted   i n  

Chapter VIII. The development  of a Lyapunov f u n c t i o n a l   f o r   t h i s   c l a s s  of wave 

equations is considered  one of t h e  main con t r ibu t ions   o f   t h i s   t hes i s .  It 

es t ab l i shes   cond i t ions   fo r   a sympto t i c   s t ab i l i t y  of t h e   n u l l   s o l u t i o n  and t h e  

group  property of t h e   s o l u t i o n s   t o   t h e  nave equations. 

Chapter I X  is devoted   to  a number of app l i ca t ions   wh ich   i l l u s t r a t e  

var ious  aspects  of the  developed  s tabi l i ty   theory.  'With the  except ion of 

Chapter X, a lmost   en t i re ly   the   au thor ' s  work,  where some nonlinear  systems are 

formally  analyzed,  the  emphasis  has  been on a mathematically  r igorous 

formula t ion   of   the   s tab i l i ty  problem. Even though  only  the  s tabi l i ty   proper-  

ties fo r  a class of l i n e a r ,   s t a t i o n a r y ,   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  are 

, 

i 

es t ab l i shed   he re ,   t he   d i r ec t ions   t o   be   pu r sued   fo r   en l a rg ing   t h i s  class have 

been  opened to   fu r the r   r e sea rch .   These   r e su l t s   appea r   t o   be  a s i g n i f i c a n t  

contribution  toward a r igorous Lyapunov s t a b i l i t y   t h e o r y   f o r  a more genera l  
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class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   i n c l u d i n g   n o n l i n e a r   p a r t i a l  

d i f f e ren t i a l   equa t ions .  
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111. MATHEMATICAL PRELJMINARIES 

Engineers  have become fami l ia r   wi th   the   concepts  of linear vec tor  

spaces and l inear   t ransformat ions  on these  spacesthrough  the  introduct ion of 

t he  state space   approachin   cont ro l   theory  and t h e  development  of a Lyapunov 

s t a b i l i t y   t h e o r y   f o r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  The s t a b i l i t y   s t u d y   o f  

general   operator   different ia l   equat ions  adds  another   dimension  to   these 

concepts .   Funct ional   analysis  is a fundamenta l   too l   in  the s tudy of opera tors  

defined i n  genera l   func t ion   spaces .   In   the   fo l lowing   sec t ions  some of t h e  

bas i c   no t ions  and p r o p e r t i e s   t h a t  are i m p o r t a n t   i n   t h e   s t a b i l i t y   a n a l y s i s   o f  

ope ra to r   d i f f e ren t i a l   equa t ions  w i l l  be  introduced. A more de ta i led   t rea tment  

and  examples  can  be  found i n  any book  on f u n c t i o n a l   a n a l y s i s ,   f o r  example, 

Reference 23. 

A. Normed Linear  Spaces 

In   the   p rev ious   chapter   the   genera l   opera tor   d i f fe ren t ia l   equa t ion  was 

introduced  by  defining - A as an  operator  i n  a normed l inear   space.  Such a 

space is defined as follows: 

Def in i t ion  111-1. L e t  X be a vec tor   space   over   the   f ie ld  of r e a l o r  complex 

numbers. A norm on X, denoted  by I I I I, i s  a real-valued  function on X with 

When t h e  scalars over X are t h e  reals, X is called a real normed l i n e a r  space. 

23 

I 

, 



The f in i t e   d imens iona l  real Euclidean  space, Rn, canbe made i n t o  a 

normed . ' l inear  space  by  defining  the norm by 

The 

f o r  

norm f o r  a space  can  be  def ined  in  more than  one way. Thus another norm 

R" i s  defined  by 

These  two  norms create two d i f f e r e n t  normed l inear   spaces ,   wi th   poss ib ly  

d i f f e ren t   bas i c   p rope r t i e s .  The in t roduc t ion  of a norm f o r  Rn makes (11-3) a 

s p e c i a l  case of the   genera l   l inear   opera tor   d i f fe ren t ia l   equa t ions  as defined 

by (11-4). 

The norm of X induces a metric o r   d i s t a n c e  d which i s  defined by 

d(5,y) = I12 - yl I 2, y €X 

i.e., the  distance  between two elements x and YEX is given  by I Ix - 11 I. 
According t o   t h e i r   p r o p e r t i e s  one   can   d i s t inguish   d i f fe ren t  classes of normed 

- - - 

l i nea r   spaces .   F i r s t   o f  a l l  the  pre-Hilbert   spaces are defined: 

Def in i t i ons  111-2. A real o r  complex normed l inea r   space  X is c a l l e d  a 

pre-Hilbert  space i f  i t s  norm s a t i s f i e s   t h e   c o n d i t i o n  

2 2 2 2 
I I X + Y l I  + I Ix - rll = 2(1IXlI + Ilyl I 1. 

The  more important normed l inea r   spaces  are the  complete normed l i n e a r  

spaces o r  Banach spaces. A Banach space X i s  a normed l i n e a r   s p a c e   i n  which 

every Cauchy sequence  converges  with  respect  to  the norm t o  a limit p o i n t   i n  

X. A complete  pre-Hilbert  space is c a l l e d  a Hilber t   space.  The norm i n   t h e  

Hi lber t   space  is the  one  induced  by  an  inner  product, 1 1x1 I = <X, - The 

inner  product,  <.,*>, is d e f i n e d   i n  a real pre-Hilbert  space by: 
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and i n  a complex pre-Hilbert   space by: 

a,y> = <x,y> + i cx,, iy>l 

where 

This  inner  product  has  the  following  properties:  

1 2 2 
<X’Y>1 = t ( I  IX + Yl I - 1 I2 - yl I 1. 

i. < a x,y> = u <x,,y> . c1 real o r  complex 

ii. < - x + y,z> = < X , Z >  + < y z> 
” -9- 

iii . < ~ , y >  = < y,   x>  for  real space (= < y,x>  for  complex  space) 
- 

” ” 

by def ining  the  inner   product   by  the  fol lowing  f ini te  series: 

< x,y> = XIYl + x2y2 + ... + xnyn. 

S t a b i l i t y  is d e f i n e d   i n  terms of t h e  norm chosen fo r   t he   l i nea r   space .  It 

might   be   expec ted   tha t   the   s tab i l i ty   p roper t ies  will depend  on t h e   p a r t i c u l a r  

norm s e l e c t e d   f o r   t h e  space. The  norm can   in   genera l   be   chosen   in  many 

d i f f e r e n t  ways.  The s t a b i l i t y   p r o p e r t i e s  are preserved  from  one  space  to 

a n o t h e r   i f   t h e  norms are equivalent  . Two norms , I 1 I I and I I I I 2, are 

equ iva len t   i f   t he re   ex i s t   cons t an t s  c1 and c2, “O>C2>c1>0 such  that  

Moreover the  spaces X and X2 denoted by X1 1 

respec t ive ly  are topologica l ly   equiva len t .  

For  systems  described op f ini te   dimensional   Eucl idean  spaces  a l l  

norms are equivalent.  Thus s t a b i l i t y   w i t h   r e s p e c t   t o  one norm impl i e s   s t ab i l -  

i t y   w i t h   r e s p e c t   t o   a n o t h e r ,  i.e., s t a b i l i t y   i n   o n e  normed space  implies  

I 

s t a b i l i t y   i n   a n o t h e r .  The s t a b i l i t y  problem  evolves  basically  around  the 

s e l e c t i o n  of a norm, i.e., t h e  normed l inear   space.   For   Hilber t   spaces  

25 



t h i s   r e d u c e s   t o   t h e   s e l e c t i o n  of  an  inner  product. 

Since  the  s tabi l i ty   theory  to   be  developed  concerns  pr imari ly  

d i s s ipa t ive   ope ra to r s  ( 2 4 ) ,  which are de f ined   i n  terms of the  inner   product ,  

Hilber t   spaces  are very  important .   Diss ipat ive  operators   can  be  s tudied  in  

somewhat more general  spaces.  These  so-called  semi-inner  product  spaces were 

introduced by L ~ m e r ' ~ ~ ) .  Lumer and Ph i l l i p s (26 )   s tud ied   d i s s ipa t ive   ope ra to r s  

i n   t hese   pa r t i cu la r   spaces .  

Def in i t ion  111-3. A semi-inner  product  space i s  defined on a complex o r  real 

vector   space X with norm I 1 I I i f   t o   e a c h   p a i r  2,y E X there  corresponds a 

complex o r  real number [x,y] such  that  

i. [x + y,zl = C5zl + [y,zl 

ii. [az,Y'l = dx,yl 

iii. [x,xl = I 1x1 l 2  f o r  x + o 
" " 

n 

Any Banach space  can  be made i n t o  a semi-inner  product  space.  In  particular, 

f o r  a Hilbert   space  the  only  semi-inner  product is the  usual   inner   product .  

The r e l evan t   p rope r t i e s  of normed linear  spaces  can  be  found in any 

book on func t iona l   ana lys i s  and the  papers  given as references.  Where 

necessary   in   the   fo l lowing   chapters ,   these   p roper t ies  w i l l  be   reca l led .   In  

the   nex t   s ec t ion ,   l i nea r   ope ra to r s  and the i r   p rope r t i e s   i n   t hese   va r ious  

spaces are introduced. 

B. Linear  Operators 

This   sec t ion  is devoted   to   the   charac te r iza t ion  of operators  (23) , (27) 

L e t  X and P be two l inear spaces  over  the same real o r  complex f i e l d .  The 

ob jec t ive  is t o   c h a r a c t e r i z e   t h e  mappings T: x -+ where x E X and x E Y. 
" 
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Defin i t ion  111-4. The mapping T: x -f p- = T(x)  defined  on a l inear   manifold D 

of X and t ak ing   va lues   i n  Y with  the  property - T(a zl + 8 x2) = a (Txl) + 8 (Rr,) 

is c a l l e d  a l i nea r   ope ra to r  on D ,C X i n t o  Y. 

" " 

- 
D = D(T), t he  set i n  X on which T operates ,  is c a l l e d   t h e  domain  of T. - - - 

The set i n  Y which r e s u l t s  frpm the   opera t ion  of T on D(T) C X is c a l l e d   t h e  

range of 2, ??(x), 
- - =  

R ( 2 )  = {y E Y 9 y  = 22, x E D(T)). - 
I n   c e r t a i n   a p p l i c a t i o n s   t h e   n u l l   s p a c e  N(T) is used as defined  by 

N(2) = {z E D(2) 3 T x = 0). 

- 
" 

I f   t h e   r a n g e  R(T) is con ta ined   i n   t he  scalar f i e l d  K, then T is c a l l e d  a 

l i n e a r   f u n c t i o n a l .   I f  a l i nea r   ope ra to r  - T gives  a one-to-one map of D(T) onto 

- - 
- 

R (T) , then   the   inverse  map - T-' g ives  a l inea r   ope ra to r  on R(T) onto D(T) : - - 
T T X = ~f f o r  x E D(T) and T T-l y = 2 f o r  y E R(T). -1 - " - - " - 

- T-' is t he   i nve r se  of - T. 

Proposi t ion 111-1. A l i nea r   ope ra to r  - T admits   the  inverse  - T-' i f  and only i f  

" T x = 0 implies  - x = 2. 
Def in i t ion  111-5. L e t  T and T be   l i nea r   ope ra to r s   w i th  domains D(T ) and 

D(T ) both  contained i n  a l inea r   space  X, and  ranges ??(El) and R(x2) both 

conta ined   in  a l i nea r   space  Y. Then El = x2 i f  and o n l y   i f  D(!Tl) = D(L2) and 

-1 -2 -1 

-2 

xl 2 = x2 5 f o r  a l l  - x E D(xl) = D(Z2). If D(T "1 ) = C D(x2) and " T1x = x2z f o r  a l l  

x E D(T ) , then X2 is cal led  an  extension  of  xl and xl a r e s t r i c t i o n  of x2, - -1 

wr i t t en  as xl g x2. 
I 

An important   role  is played by t h e  bounded l inear   opera tors .  L e t  X 

and Y be normed l inear   spaces .  A l i nea r   ope ra to r  T wi th  domain i n  X and 

r ange   i n  Y is bounded i f   t h e r e   e x i s t s  a pos i t ive   cons tan t  M s u c h   t h a t   f o r  

a l l  - x E D(T) 

- 
I 
2 

1 
- 

27 



I I r  XI I =' MI 1x1 I 
- T is continuous a t  a po in t  - x E X and - T is uniformly  continuous in X are 

equivalent  statements.  The c l a s s  of a l l  bounded l inea r   ope ra to r s  on X i n t o  Y 

is designated as L(X,Y)  i.e., - T EL(X,Y) D(T) - : X ,  R(T) C Y, T is bounded. 

Proposi t ion 111-2. L e t  X and Y be normed l inear   spaces .  Then a l inear 

operator  on D(T) _C X i n t o  Y admits a continuous  inverse T-l i f  and  only i f  

t h e r e   e x i s t s  a pos i t ive   cons tan t  y such t h a t  

" - 

" - 

I I ; x I I  2 y I IxI I   for   every  - x E OQ). 

Defin i t ion  111-6. I f  T is a bounded l i n e a r   o p e r a t o r  on a normed l inear  space 

X i n t o  a normed l inea r   space  Y, then i t s  norm is defined  by 

- 

An extension of the   no t ion  of a bounded l inea r   ope ra to r  is t h a t  of a 

c losed   l inear   opera tor .  The d e f i n i t i o n  is based on the   no t ion  of graph  of 

Def in i t ion  111-7. The product  space X x Y is defined as the  normed l i n e a r  

space Of a l l  o rde red   pa i r s  (x,y), - 5 E X, y E Y, w i th   t he   u sua l   de f in i t i ons  of 

addi t ion  and scalar mul t ip l i ca t ion  and  with norm given by 

ll(25Y)Il = max { I IXI I ,  IIyllI. 
Defin i t ion  111-8.  The graph G(T) - of - T is t h e   s e t  {(x,Tx) " Ix E D(T)).  - Since 

- T is l i n e a r ,  G(T) - i s  a subspace  of X x Y. I f   the   graph  of  - T is c losed   i n  

X x Y,  then - T is s a i d   t o   b e   c l o s e d   i n  X. When the re  is  no  ambiguity  concern- 

i ng   t he  space X, - T is sa id   t o   be   c losed .  

The following  remarks  can  be made: 

i. - T is c l o s e d   i f  and   on ly   i f   i n  D(T), - -f 2, T x + y, imply "* 
- x E D(T) and T x = y. - " 
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ii. I f  - T is 1-1 and closed,  then T-' is  closed. - 
iii. The n u l l  space  of a closed  operator  is closed. 

iv. I f  D(T) - is closed  and - T is continuous,  then - T is closed. 

V. The continuity  of - T does  not   necessar i ly   imply  that  - T i s  closed. 

T is closeddoes  not   necessar i ly   imply  that  T is continuous. - - 
Closed-Graph Theorem. A c losed   l inear   opera tor  mapping a Banach space   i n to  a 

Banach space is continuous. 

Some add i t iona l   p rope r t i e s  of  'closed  operators are in t roduced   a f t e r  

def ining  the  adjoint   operator .  

For a Banach space X the  conjugate   or   dual   space,   the  Banach space of 

bounded l inea r   func t iona l s  on X, i s  indica ted  by X'. L e t  - T be a l i n e a r  

operator  mapping t h e  normed l inea r   space  X i n t o   t h e  normed l inea r   space  Y and 

with domain dense i n  X. Then the  conjugate  of - T is  denoted by - T' .  The 

def in i t ion   can   be   found  in  (23) 

I f  X and Y are Hilber t   spaces ,   then  the  not ion  of   conjugate   operator  

of - T can  be  extended t o   t h a t  of ad jo in t   opera tor  of - T which is denoted  by T*. 

The opera tors  one genera l ly   dea ls   wi th  are mappings  from  subsets  of a Hi lbe r t  

space X i n t o  X. L e t  - T be  such a l inear   opera tor .  The ad jo in t  - T* of T wi th  

respect t o  X is defined by 

- 

< 2 2, y> = < " x , T * ~  f o r  5 E D Q) an4 - y ED (T.2'9 - 
T* e x i s t s  if and o n l y   i f  D(T) - is  dense i n  X. The c losure  of D(T) - i n  X is 

denoted  by  D(T),  thus D(T) is d e n s e   i n  X implies  D(T) = X. A l i nea r   ope ra to r  

- T on D(T) C X i n t o  X will be   ca l l ed  symmetric i f  T* 2 2, i.e., i f  x* is an 

extension  of - T. A linear operator  - T: D(2) -+ X is c a l l e d   s e l f - a d j o i n t   i f  

T = T*. 

- - - - - 
" - 

" 
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The fol lowing  propert ies   of  symmetric and se l f -ad jo in t   opera tors  

should  be  noted: 

i. A symmetric  operator T has a closed  symmetric  extension - 

ii. An everywhere  defined symmetric operator  is bounded  and se l f -ad jo in t .  

iii. A se l f -ad jo in t   opera tor  is closed  s ince  an  adjoint   operator  i s  

closed. 

The r e l a t i o n  between  closed  operators  and  their   adjoints is expressed 

in   the  fol lowing  important   theorem and coro l la ry :  

Theorem 111-1. L e t  - T be a l i nea r   ope ra to r  on D(T) C X i n t o  X such  that  

D(T) = X. Then T admits a c losed   l i nea r   ex t ens ion   i f  and o n l y   i f  T:k* = (T*) * 
" - 

- - - 
e x i s t s ,  i.e., i f  and only if m) - = X. 

Corollary 111-1. I f  D(T) - = X, then - T is a c losed   l i nea r   ope ra to r   i f  and only 

i f  T = T**. 
" 

L e t  us   next   i l lus t ra te   the   concept   o f  bounded  and  unbounded l i n e a r  

ope ra to r s   on   f i n i t e  and inf in i te   d imens iona l  spaces. 

1 1 
" D X = c01 (xl,  x2, .. . - n 
" E x = c o l  (xl,  2x2, ... n xn). 

21/2 , I  I = ( f xl)  then  both - D and - E are bounded s ince  
i=1 

operators  on a f ini te   dimensional   Eucl idean  space are bounded. 

b. Consider  next  the same opera tors  on a inf in i te   d imens iona l  
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Euclidean  space ROD, t h u s   i f  2 = c o l  (x1,  x2, . . . . ) then 

1 
" D X = C O ~  (xl, 2: x2 . ....) 
" E x = c o l  (x1, 2x2, ... ..). 

W 

I f   t h e  norm of - x E Rw is defined  by I I x I I = ( 1 then D will - 
i-1 

still be  bounded, since I ID " X I  I =< I 1x1 I however, & w i l l  no  longer  be  bounded. 

The concept   of   diss ipat ive  operator  is defined  next.  

Def in i t ion  111-9 . L e t  T be a linear operator   such  that  P(2) and R(T) belong 

both   to   the   Hi lber t   space  X. Then - T is c a l l e d   d i s s i p a t i v e   i f  

- 

R e  < T x, x> 5 0 f o r  a l l  x E D(T). 
" - - - - 

Defin i t ion  111-10. L e t  T be  a linear opera tor   such   tha t  Q(T) and  R(T) both  

belong  to  X. Then - T is  c a l l e d   s t r i c t l y   d i s s i p a t i v e   i f   t h e r e   e x i s t s  a constant  

c > 0 such   tha t  

- - - 

R e  < T x,  x> 5 - c 11x1 I f o r  a l l  x E D(T). 
2 

" - - - - - 
This   concept   can   s imi la r ly   be   def ined   in  terms 0% semi-inner product. 

This  concept is used  f requent ly   in   the  fol lowing  chapters .   'Defini t ions 111-9 

and 111-10 imply  that  -T - is  p o s i t i v e  and p o s i t i v e   d e f i n i t e   r e s p e c t i v e l y .  

Spec t r a l   t heo ry   fo r  an operator  - T is t h e   d i s t r i b u t i o n  of the   va lues  

of X f o r  which XX = XI " - T has  an inverse  and t h e   p r o p e r t i e s  of t he   i nve r se  

when it  e x i s t s .  The following are t h e   d e f i n i t i o n s  of the  Trequently  used 

reso lvent  and  spectrum. 

Def in i t ion  111-11. I f  X. is such  that   the   range R(T ) is d e n s e   i n  X and T 

has a continuous  inverse ( X  I - T)-', then X is s a i d   t o   b e   i n   t h e   r e s o l v e n t  
- X 0  - A 0  

0 -  - 0 t 

set p(T) - of - T and t h i s   i n v e r s e  (X& - X)-' is denoted  by R(Xo; - T) and it  is 

ca l l ed   t he   r e so lven t  ( a t  Xo) of - T. A l l  complex  numbers X n o t   i n  p(T) I. .orm a 

set u(T) - cal led  the  spectrum of - T. The spectrum  u(T) - is  decomposed i n t o  

- .  
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d i s j o i n t  sets P,(T) - , Cu (T) - and Ru(T) - with  the  fol lowing  propert ies :  Po (T> is 

t h e   t o t a l i t y  of complex  numbers X f o r  which T does  not  have  an  inverse; Pu(z)  

is ca l led   the   po in t   spec t rum of 2. 
-X 

C,(T) - is t h e   t o t a l i t y  of  complex  numbers X f o r  which T.X ha s  a 

discont inuous  inverse   with domain dense i n  X; C (T) is cal led  the  cont inuous u -  

whose  domain is not  dense in  X; R (T) is cal led  the  res idual   spectrum  of  T. u -  - 
An important  theorem  concerning  the  resolvent is: 

Theorem 111-2. L e t  X be a Banach space and T a closed linear operator   with - 
i t s  domain D(T) and  range R(T)  b o t h   i n  X. Then, fo r   any  X E p(T)  the - - 0 -  

resolvent  ( X  I - T)-' is an  everywhere  defined  continuous  linear  operator. 
( r -  

The fol lowing  sect ion is devoted   to  some propert ies   of   Hilber t   spaces ,  

which are very  important   for   the  development   of   the   s tabi l i ty   theory  for  a 

class o f   ope ra to r   d i f f e ren t i a l   equa t ions .  

C. Hilbert   Spaces 

In  Chapter  I1 the   gene ra l   ope ra to r   d i f f e ren t i a l   equa t ion  (11-4) was 

introduced  with A defined on a general  normed l inea r   space  X. It is next 

assumed t h a t  X is a Hilber t   space.  Thus, e i t h e r   t h e  norm of X is induced by 

an   inner   p roduct ,   o r   the  norm s a t i s f i e s   t h e   p a r a l l e l o g r a m  law and the re fo re  

induces  an  inner  product. In Sect ion A equivalent  norms. i n  Banach spaces 

were defined.  Since a Hilber t   space  belongs  to  a s p e c i a l  class of  Banach 

spaces,   the  concept of equivalent  norm not  only holds,  but  can  be  formulated 

more spec i f i ca l ly   w i th   r e spec t   t o   t he   i nne r   p roduc t   s t ruc tu re   o f   t he   H i lbe r t  

space .   In   par t icu lar ,  i t  a l lows   the   in t roduct ion  of the  concept of equivalent 

inner   products  as defined by: 
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Defin i t ion  111-12. L e t  H1 = (H, 9 ) and H2 = (H, be   H i lbe r t  

spaces   consis t ing of the  elements  of a l i nea r   vec to r   space  H and the   inner  

1 2 

products < . s . > ~  and c.,.> respec t ive ly .  The inner   products  are c a l l e d  

e q u i v a l e n t   i f  and only   i f   the   induced  norms are equivalent.  

2' 

This  concept of equivalent  inner product  enables  one  to  "carry"  the 
I 

s tab i l i ty   p roper t ies   f rom  one   Hi lber t   space   in to   another   Hi lber t   space   def ined  

f o r   t h e  elements of a l inear vector space. It is a l s o   p o s s i b l e   t h a t   t h e  norm 

induced by the  inner   product  of a Hilber t   space,  H1 = (H; <.,-> ), is 1 
equivalent   with  another  norm which  does  not   sat isfy  the  paral le logram law. 

This last norm w i l l  not  induce an inner   p roduct ;   the   resu l t ing  space (H; I I I I 2) 

is thus  not  a Hilber t   space,   but  s t i l l  a Banach space. 

T h e  cha rac t e r i za t ion  of equivalent   inner   products   can be made more 

e x p l i c i t  by t h e  Lax-Milgram  Theorem (23) . 
Theorem 111-3. (Lax-Milgram). L e t  H be a Hilber t   space and l e t  ,B(z,y) be  a 

complex-valued func t iona l   def ined  on the  product   Hilber t   space H x H which 

sa t i s f i e s   t he   cond i t ions :  

i. Sesqui- l inear i ty  ,i.e., 

and 

then   t he re   ex i s t s  a uniquely  determined  bounded  l inear  operator - S cL(H.,H) with  

a bounded l i n e a r   i n v e r s e  - S-l E L(H,H) such   tha t  c x,z> = B(x, 5 y) whe$ever 
9 

I 

I 
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- x and - y E H and llSlI ” 5 6’l, 115 -1 1 1  z y  . 
The implicat ions of t h i s  theorem for   the  equivalent   inner   products  are 

given by the  fol lowing theorem: 

Theorem 111-4. Two inner   products   def ined on a real  l i nea r   vec to r   space  H 

are e q u i v a l e n t   i f  and   on ly   i f   there  exists a symmetric bounded p o s i t i v e  

d e f i n i t e   l i n e a r   o p e r a t o r  2 E L(H,H) such   tha t  = < ” x,S y> f o r  a l l  1 

5, y E H. 

Proof: L e t  B ( 5 , y )  = < 5,s p where S is symmetric.  Then  B(x,y) is b i l i n e a r  

and B(y,& = < ”- y,S = < 5,s y>l. Since - S is pos i t i ve   de f in i t e   B(x ,x )  = 

1’ - - 
” 

< 5,s 2 6 < -” x x>1 and s ince  5 i s  bounded, 

I IS ICI I 2 y I 1x1 I t he re   fo l lows   t ha t  B(z,x) = 

prope r t i e s  of an  inner  product.  The f a c t   t h a t  

2 

G,->2 are equiva len t   impl ies   tha t   the   inner   p roducts  are equivalent.  

Suppose ‘and <*,*> are inner   products   with  equivalent  norms, 1 2 

i.e., t he re   ex i s t   pos i t i ve   cons t an t s  a and B ,  0 < a < B < 01, such  that ,  

a I I * 1 1 1  =< lI*l12 = ‘ d l * I l 1  

Then s ince  < * s * >  is b i l i n e a r   i n  real H, there   fol lows 2 

1 <5,Y>21,<lIXl 121 Irl 12; B21 121 I l l  IYl I,,  
and therefore  by Theorem  111-3 t h e r e  exists a uniquely  determined - S such 

t h a t  

< s,y> 1 = cx_,s 1 ’2’ 
But s ince<  2, y> = %,gl there   fo l lows  < x,S y> = c . , z  and - S is symmetric 

thus  proving  the  theorem. s is  obviously a self-adjoint   operator .  

-1 -” 2 

I n  t h i s  framework  of equivalent   inner   products  i t  is poss ib l e   t o  

d e r i v e   t h e   s t a b i l i t y   p r o p e r t i e s  of the   genera l   opera tor   d i f fe ren t ia l   equa t ion  of 

34 



type (11-4) from the knowledge of  the  properties  of  the  operator A only. Once 

the formal partial   differential  equations are formulated i n  terms of the 

general  operator  differential  equations,  the  equivalent  inner  products  enable 

one to derive  the maximal system  parameter  ranges for  stability.   This  concept 

can be extended t o  complex Hilbert  spaces. 

- 
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IV.  SEMI-GROUPS,  GROUPS AND INFINITESIMAL GENERATORS 

In order   to   deve lop  a s t a b i l i t y   t h e o r y   f o r   t h e   s o l u t i o n s   o f   t h e  

o p e r a t o r   d i f f e r e n t i a l   e q u a t i o n  

d x  - - = A X (X ED@) C X; A: D(A)  + R(A) C X) d t  -- - (IV-1) 
” - - - 

where X i s  a Banach space, A w i l l  b e   r e s t r i c t e d   t o   t h e  class of  operators  which 

are the   in f in i tes imal   genera tors   o f  bounded l inear operator  valued  functions 

- 

“t ’ - T t 2 0 t h a t   s a t i s f y   t h e   c o n d i t i o n  

-t+s T = T  - / T _ Y & ”  - I .  (IV-2 1 

The not ion  of   inf ini tes imal   generator ,   to   be  formulated later,  was 

introduced  by I i i l l e  and  Yosida. Much about  this  basic  concept  can  be  found 

i n  t h e i r   r e s p e c t i v e  books (28) (23) ,  toge ther   wi th   the   genera l   theory  of l i n e a r  

ope ra to r s  i n  function  spaces.   Instead of t h e  bounded l inear  ope ra to r s  Et 
having  merely the semi-group property,  the more r e s t r i c t e d  semi-groups of 

class (C ) are introduced. It is i n  terms of   these bounded ope ra to r s   t ha t   t he  

p r o p e r t i e s  of a system (IV-1) can  be  studied more e a s i l y   t h a n   i n  terms of the  

0 

A. Semi-Groups and  Groups of Class (C,) 

L e t  X be a Banach space  with norm I I I I. For  each  fixed t 2 0 , le t  - 
T be a bounded l inea r   ope ra to r  on X i n t o  X, T cL(X,X), t he  s e t  of a l l  bounded 
“t -t 

l i n e a r   o p e r a t o r s  mapping X i n t o  X. Then the   s ing le   parameter   fami ly  of 

operators  (T t 2 0 1 ,C L(X,X) with  parameter t ER+ = [0, m )  is  s a i d   t o  

s a t i s f y   t h e  semi-group p r o p e r t y   i f  

“t’ - 
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T * T  = T  
"t s -t+s ( t , s  > 0). 

Defin i t ion  IV-1. I f  {xt; t 2 - 01 C - L(X,X) s a t i s f i e s   t h e   c o n d i t i o n s  

i. T * T  = T  -t s -t+s ( t , s  2 - 0 )  

ii. & = L ( I  - is t he   i den t i fy   ope ra to r  i n  L(X,X)) 

iii. l i m  I 12, 2 - T x1 I = 0 for   each to > 0 and a l l  x EX, 
t+tO -to - - 
then {T 1 is c a l l e d  a semi-group  of class (C ). -t 

Because  of t h e  semi-group s t r u c t u r e  (23) i t  fo l lows   t ha t   fo r  a semi- 

group {T } of class (C,) t he re   ex i s t   cons t an t s  M > 0 and 6 < - such  that  
"t 

I l r , l  I 2 "  e ( t  2 0) B t  (IV-3) 

I f   i n   a d d i t i o n  t o  ( i ) ,   ( i i ) ,  and ( i i i )  of   Defini t ion (IV-1) 6 i n  

(IV-3) can  be  chosen as B = 0, then 

I I q l  I <= 11 (0 _< - t < -) ( IV- 4 )  

and {xt> i s  an  equi-bounded  semi-group of class (C,). I n   p a r t i c u l a r   i f  

M = 1, i.e., if 

Ilrtll 2 1 f o r  (0 5 - t < -) (IV-5) 

then ET 1 i s  cal led  contract ion  semi-grmp d class (C 1. 
"t 

An equi-bounded  semi-group of class (C ) is equi-continuous i n  t (23) . 0 

The equi-continuous  semi-groups are of  main i n t e r e s t   i n   t h e   f o l l o w i n g .  

d i scuss ion   o f   s t ab i l i t y   p rope r t i e s  of  unbounded d i f f e ren t i a l   ope ra to r s .  It 

is  clear t h a t   s i n c e  {T 3 is only   def ined   for  t 2 0 the  corresponding  operator 

d i f f e ren t i a l   equa t ion   does   no t   gene ra t e  a dynamical  system. The system 

becomes a dynamical  system i f  IT 1 can  be  extended  to  the  negative time a x i s  

and IT 1 becomes a group: 

Def in i t ion  IV-2. I f  {Xt ; - < t < -1 C L(X,X) s a t i s f i e s   t h e   c o n d i t i o n s :  

-t 

-t 

-t 

- 

-t -s -t+s T * T  = T  (-- < t , s  < -) 

t 

! 
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iii. l i m  I 1% x - T 21 I = 0 f o r  each  to€(--, + =) and 
t+tO " 0  

f o r   a l l  5 E X, then i s  c a l l e d  a group of c l a s s  (C,) . 
The al ternat ive  def ini t ion  (Yosida(23))   has   the  group &} def ined   i n  

A 
terms of equi-continuous  semi-groups (T 1 and (T 1 by l e t t i n g  S = Lt f o r  

-t -t "t 

t 1. 0 and = T f o r  t 2 0, y i e ld ing  5 = I = T T Thus 
n A 

- -t "t - -t - -t - t o  

A -I 
- t - t  
T = T  (IV-6)  

A 
with & defined on R(T ) C X. "t = 

The disadvantage CE defining  the  group (S 1 i n   t h i s  manner i s  t h a t  
A 

-t T as defined by (IV-6)  is a semi-group only i f  i t  i s  defined on a l l  d X, 

thus i f  R(&) = X. 

-t 

- 
If is  a semi-group  (group) aE c l a s s  (C,), then 1%) with 

S = e T is a semi-group  (group) cf c l a s s  (Co) f o r   c o n s t a n t  u E(--,-). 
-t -t 

at  

The group s t ruc tu re   p rov ides   t he  norm af T where i s  a gra tp  "t' 
of class (C ) with  an  upper bound--there ex i s t   cons t an t s  M > 0 and f3 c - 
such  that  

0 

( IV- 7) 

If i n  ( IV-7)  B = 0 ,  then (T } is an  eaui-bounded  group of class (C,). 

And i f   i n   a d d i t i o n  M = 1 i n  ( IV-7) ,  then (T is  a contraction  group of class 
"t 

-t 

(C0> 0 

In t h e   s t a b i l i t y   t h e o r y  of  semi-groups the   cont rac t ion  semi-groups  of 

* class (C,) are very important. The n a t u r e  of the  groups,  however,  does  not 

l i m i t  t h e   s t a b i l i t y   p r o p e r t i e s  t o  contract ion  groups of class (C0). An 

extremely  important  theorem i n  proving  necessary  and  suff ic ient   condi t ions  for  

a sympto t i c   s t ab i l i t y  of  groups was proven  by Vogt: 
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Theorem IV-1. (Vogt) . L e t  1% ; t E (-=,-) 1 C - L(X,X) be a group. Then the re  

ex i s t   pos i t i ve   cons t an t s  m and a such  that  

l l x + l l  2 M e (IV-8) 

- Proof:  Since & 2 - T = I - t - *  - '  

o r  

llxll = IIr T A I  IIr I I I I r , r r l I  
-t -t -t 

-1 IIqxII 2 IIr -t I I  Ilxll 
From  (IV-7) : 

and hence IIr,xII 2 M -1 e -dtl  I I x I 1  
which i s  the  required  inequal i ty .  

It should  be  noted  that  (IV-8) i s  a s u f f i c i e n t   c o n d i t i o n   f o r   t h e  

ex is tence  of the   inverse  S = S fo r   each  t E (-=,-) with D ( S  ) = X. 
-1 

"t "t - -t 
B. Infinitesimal  Generators  of Semi-Groups 

and  Groups  of Class (C,) 

In   the   p rev ious   sec t ion ,   the  semi-group o r  group  system  structure  has 

been  established. The next   s tep  i s  to   de r ive   t he   cond i t ions   fo r  - A so  t h a t   t h e  

s o l u t i o n s   t o  (IV-1) posses s   t h i s   s t ruc tu re .   In   t he   nex t   chap te r   t he  Lyapunov 

! 

! 

s t a b i l i t y   d e f i n i t i o n s  and  theory is es t ab l i shed   fo r   t hese  semi-groups o r  

groups . 
Def in i t i on  IV-3. L e t  {& ; t 2 - 0) C - L(X,X) be  an  equi-continuous  semi-group 

of class (C,). The in f in i t e s ima l   gene ra to r  A CE T is defined by 
-t 

(IV-9) 

whenever t h i s  l i m i t  ex i s t s .  
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- A is a l inea r   ope ra to r   w i th  domain 

and t h e  range of A, ??(A) X. Since D (A) c o n t a i n s   a t  least the   vec to r  0, i t  

is  nonempty . In  f a c t  D (A) = X 

- - (23) . - 
The following  theorem  gives  the  necessary and su f f i c i en t   cond i t ions  

f o r  - A to   be   an   in f in i tes imal   genera tor  of a semi-group. The proof  of  the 

theorems i n   t h i s   s e c t i o n   c a n   b e   f o u n d   i n  . (23) 

Theorem IV-2. L e t  - A be a l inear   opera tor   wi th  D.(A) - dense   in  X and R(&) i n  X 

and l e t  t h e   r e s o l v e n t   ( I  - n A)'l e x i s t   i n  L(X,X).  Then A i s  t h e   i n f i n i t e s -  

imal generator  of a uniquely  determined  equi-continuous  semi-group i f  and  only 

-1 - - - 

i f   t h e r e   e x i s t s  a posit ive  constant  c  independent of n and m such  that  

I l(1 - n-l - A)'ml I S - C (n=1,2,3, . .. ; m=1,2,3,. . .). 
(IV-11) 

The  semi-group  generated by A i n   t h e  above  theorem is b a s i c a l l y  - 
r e l a t e d   t o   t h e   s p e c t r a l   p r o p e r t i e s  of A i n   t h a t  (XL - A )  e x i s t s  everywhere 

f o r  Re(X)> 0 i f  A generates  a semigroup s t a t i s f y i n g  I IT I I _< M. 

Corol lary IV-1. I f   i n  Theorem IV-2, (IV-11) is replaced by 

-1 - - 
-t - 

I I (L - n-l - A)-'1 I - - < 1 (n=1,2,3,.. .) (IV-12) 

then - A generates  a cont rac t ion  semi-group. 

The following  theorem relates c e r t a i n  semi-proups and t h e i r  

corresponding  inf ini tes imal   generators .  

Theorem IV-3. L e t  A be  the  inf ini tes imal   generator   of  the semi-group (T 1 

s a t i s f y i n g  

- -t 

i. T T = T ( t ,S  2 O), T+, = I -t -s -t+s - 
it. tlJmo+I lxtz - X I  I = o 2 E X 
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I 

! 

iii. I [ql 1 - < 11 eBt ( t  - > 0) with M > 0 and B < m and  independent of t. - 
Then (A - - B - I )  i s  the   in f in i tes imal   genera tor  of the  equl-continuous semi- 

group S = emBt T cf c l a s s  (C,) and ( X  2 - A)-' i s  everywhere  defined f o r  

Re[X] > 8.  
"t -t 

The above  theorems IV-2 and IV-3 give rise to   the   fo l lowing   coro l la ry :  

Corollary IV-2. L e t  A be a c losed   l inear   opera tor   wi th  D(A) = X and Re) C - X 
and l e t  the   reso lvent  (L - n A)-' exist in  L(X,X) f o r   i n t e g e r  n s u f f i c i e n t l y  

- 
-1 

large.  Then & is  the   in f in i tes imal   genera tor  of a semi-group s a t i s f y i n g   ( i ) ,  

(ii), and ( i i i )  of Theorem IV-3 i f  and only   i f   there   ex is t   cons tan ts ,  M > 0 and 

f3 < m such  that  

I I (L - I 5 - ~ ( 1  - f o r  m=1,2,3, ... and a l l  l a rge  n. (IV-13) 

In p a r t i c u l a r  for those  semi-groups T s a t i s f y i n g   ( i ) ,   ( i i ) ,  and 
"t 

I I 5 eBt f o r  a l l  t 2 0, - 
(IV-13) can  be  replaced by 

(IV-14) 

1 I (L - n-l - A)-'I I =: (1 - n-%)-' f o r  a l l  l a r g e  n. (117-15) 

Notice  that  Bcan be   pos i t i ve  as well as nega t ive   i n   ca ses  (IV-13) and (IV-15). 

These r e s u l t s  relate semi-groups  and the i r   i n f in i t e s ima l   gene ra to r s .  
I 

Simi la r   r e su l t s   ho ld fo r   g roups  and the i r   i n f in i t e s ima l   gene ra to r s .  The follow- 

ing theorem  summarizes  these  results: 

Theorem IV-4. L e t  - A be  a l inea r   ope ra to r   w i th  D(A)  - = X and R(A) - i n  X. L e t  
- 

the   reso lvent  (r -n-' A)" e x i s t   i n  X. Then A i s  the   i n f in i t e s ima l   gene ra to r  

of a uniquely  determined  equi-continuous  group IT t c ( - m  , = ) I  of class (C,> 

i f  and o n l y   i f   t h e r e   e x i s t s  a pos i t ive   cons tan t  M >O such  that  

- - 
"t ' 

I I (I - n-lA)-ml I 5 - M (m=1,2,3, ... and a l l  l a r g e   I n ] ,  n 0) 

(IV-16) 
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and 

(IV-17) 

I f   i n   a d d i t i o n  - A is closed and t h e r e   e x i s t   p o s i t i v e   c o n s t a n t s  Pf > 0 ,  f3 2 0 - 

If 

In-ll B)-" (m=1,2,3,. . . l a rpe ln l  , n '< 0) (IV-18) 

(IV-19) 

(IV-21) 

The statement A is a c losed   l inear   opera tor   in   Coro l la ry  IV-2 and the  - 
last p a r t  of Theorem IV-4 is cruc ia l .   Fur ther   e labora t ion  is  poss ib l e  f o r  t h e  

case when A, defined on a Hilber t   space,  is the   i n f in i t e s ima l   gene ra to r  of a 

contract ion semi-group  of class (CO). These  contraction  semi-groups  of class 

(C,) are ve ry   impor t an t   fo r   s t ab i l i t y   i nves t iga t ions .   The i r   i n f in i t e s ima l  

generators  are t h e  earlier def ined   d i ss ipa t ive   opera tors .  The r e s u l t s  of   the 

following  theorem  and  corollary are due t o   P h i l l i p s  . 
Theorem IV-5. (Ph i l l i p s ) .  L e t  - A be a l inear   opera tor   wi th  domain D(A)  and 

range R(A) - bo th   i n   t he   H i lbe r t   space  H and D-(A) - = E, then - A generates  a 

contract ion semi-group of class (C ) i n  TI if and  only i f  A is d i s s i p a t i v e   w i t h  

respect   to   the  inner   product   def ined  on H and F? <I- - A) = H. 

(24) 

- 

0 

A consequence of t h i s  theorem is the  followinp:  corollary: 

Corollary IV-3. I f  - A is  a c losed   l inear   opera tor   wi th  D(A)  - and R(A) - bo th   i n  

the   Hi lber t   space  H and = H, then A generates  a con t r ac t ion  semi-group of - 
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class (Co) i n  H i f  - A and i ts  a d j o i n t  A*, are b o t h   d i s s i p a t i v e   w i t h   r e s p e c t   t o  

the  inner  product  defined on H. 

I n   t he   co ro l l a ry  i t  is aga in   requi red   tha t  - A is  closed, a statement  not 

made i n   t h e  theorem. 

The pr inc ipa l   requi rement   for  - A t o   gene ra t e  a cont rac t ion  semi-group is 

t h a t  D(A) - is dense i n  H and  that  - A is maximally  dissipative,  i.e., - A is no t   t he  

p rope r   r e s t r i c t ion  of   any  other   diss ipat ive  operator .  A necessary  and  suff ic i -  

en t   condi t ion  is t h a t  R(X I - A) = H f o r  a l l  X > 0. I n   t h i s  case A is c losed   i f  

and  only i f  R ( A  - I - .- A) is closed. IIowever, i f  no condi t ions are imposed on 

R ( X  - A) o r  equivalently  on R ( 2  - - A), then - A must  be  closed. 

" - 

! 

I After  having  developed  the  relationship  between  the  semi-group  or  group 

l and  the  inf ini tes imal   generator ,   there   remains  one more s t e p   t o   i d e n t i f y  

~ 

systems  having  the  semi-group  property  with  the  operator  differential  equation 

(IV-1). L e t  D denote   the  time de r iva t ive  of T x f o r  x E X and d e f i n e   t h i s  t -t - - 
I d e r iva t ive  by 

I) T x = l i m  [he' (Lell - '&) 53 t "t - h a +  

! 

( IV-22)  

I f o r  x E X i f   t h e  l i m i t  ex i s t s .  - 
From Yosida (23) 

Theorem IV-6. I f  x E 0 (A) C X, then x E 0 (D T ) and - =  - t-t 

D T x = A T   x = T   A x   f o r t Z O .  t -t - - "t - "t - - - (IV-23) 

And i n   p a r t i c u l a r ,  A is commutative  with T f o r  x E (A) .  Thus i f  x E D(A) , 
then T x E D(h) f o r  t 2 0. I n  ( IV-23)  of the  above  theorem,  one  easily 

- "t - - - - 
"t - - 

recognizes   the   opera tor   d i f fe ren t ia l   equa t ion:  
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Thus i f  i n  accordance  with  the  above  theorems  proper  restrictions are 

p laced   on&,   then   the   so lu t ions   to  (IV-24) are t h e  semi-group or   croup 

t r a j ec to r i e s   g iven  by the  semi-group or   g roup   tha t  is  uniquely  generated by - A. 

The p rope r t i e s  of the   so lu t ions   can   be   s tud ied  by inves t iga t inz   t he   p rope r t i e s  

of t h i s  semi-group, i.e., of t he   i n f in i t e s ima l   gene ra to r  - A as given by (IV-24). 
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V. LYAPUNOV STABILITY THEORY FOR 

SEMI-GROUPS AND GROUPS 

A. Defin i t ions  

Once the  semi-group o r  group s t ructure  is  es tab l i shed   for   the   genera l  

ope ra to r   d i f f e ren t i a l   equa t ions  

dx - 
- =  A x (x ED@) C X) (V-1) 
d t  -- - - 

then   the   so lu t ions  are semi-group or  group trajectories. Thus t h e   s o l u t i o n  

s t a r t i n g  a t  t = O  from - x = 3 d ( A )  - is given by 

x( t ;%) = T x 
"t "0 - t , o  (V-2 1 

with - x ( 0 ; ~ )  = %, where - A is the   i n f in i t e s ima l   gene ra to r  of t he  semi-group 

{T 1 . I f  A is the   i n f in i t e s ima l   gene ra to r  of a group{ T 3 , then (V-2) holds  -t 

f o r  --oo< t <  + 0). Note t h a t  by Theorem IV-6, - x ( t ;  %)E D(A)  - ( t  2 0) i f  %ED@). 

By t h e   l i n e a r i t y  of t he  semi-group,  any t ra jec tory   can   be   re fe renced   to   the  

o r i g i n  x=g. Thus t h e   s t a b i l i t y  of  any s o l u t i o n  can be  determined by studying 

t h e   s t a b i l i t y  of the   so lu t ion   x( t ;%)  = 0, t h e   o r i g i n   o r   n u l l   s o l u t i o n .  It is 

now poss ib l e   t o   g ive   t he   de f in i t i ons  of s t a b i l i t y   i n  terms of t h e  semi-group 

"t 
T generated by - A of (V-1). 

Def in i t ion  V-1. The o r i g i n  of (V-1) is s t a b l e   i n   t h e   s e n s e  of Lyapunov (with 

respect t o   i n i t i a l   p e r t u r b a t i o n s )   i f  and only  i f ,   g iven  an E > 0, t h e r e   e x i s t s  

a 6 > 0 such   tha t  

- "t 

l l ~ l l  < 6  (V-3) 

imp l i e s  t h a t  

l12t+)l[ < E  ( t  2 - 0; v x ,  E x). (V-4) 
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Def in i t i on  V-2. The o r i g i n  of (V-1) is a s y m p t o t i c a l l y   s t a b l e   i n   t h e   s e n s e  of 

Lyapunov ( w i t h   r e s p e c t   t o   i n i t i a l   p e r t u r b a t i o n s )   i f  and only   i f  

The exponent ia l   na ture  of t h e  semi-group s t ruc tu re   u sua l ly   g ives  rise 

t o  a s t ronger   form  of   asymptot ic   s tabi l i ty ,  namely exponential   asymptotic 

s t a b i l i t y  as def ined by: 

Def in i t i on  V-3. The o r i g i n  of (V-1) is exponent ia l ly   asymptot ica l ly   s tab le   in  

the   sense  of Lyapunov ( w i t h   r e s p e c t   t o   i n i t i a l   p e r t u r b a t i o n s )   i f  and only   i f  

i. i t  is asympto t i ca l ly   s t ab le  

ii. the re   ex i s t   pos i t i ve   cons t an t s  PI and B such  that  

From Def in i t ion  17-3 i t  is clear t h a t  I 1% I I 5 - M e'Bt. I f  is} is a 

group,  then  from Theorem IV-1 t he re   fo l lows   fo r  t 2 0, I IT+ I I 5 m e . A 

group iT 1 wi th   t he   p rope r ty   t ha t   t he re   ex i s t   fou r   pos i t i ve   cons t an t s ,  

PI > 1 > m >O,a 2 6 >O such  that  

-at 
- 

"t 

- E  - - 

i s  c a l l e d  a group of exponential   type.  

The following  theorems are d i r e c t  consequences  of  the  above  definitions 

and  those  in   the  preceding  chapter :  

Theorem V-1. A s u f f i c i e n t   c o n d i t i o n   f o r   t h e   s t a b i l i t y  of t h e   n u l l   s o l u t i o n  of 

(V-1) is t h a t   t h e  semi-group IT 1 be equi-bounded. -t 

Theorem V-2. A s u f f i c i e n t   c o n d i t i o n   f o r   t h e   e x p o n e n t i a l   a s y m p t o t i c   s t a b i l i t y  

of t h e   n u l l   s o l u t i o n  of (V-1) is t h a t   t h e r e   e x i s t   p o s i t i v e   c o n s t a n t s  M and 0 

such  that  
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1 1 & 1 1  ;Me  
- B t  

B. Su f f i c i en t   Cond i t ions   fo r   S t ab i l i t y  and 

Asymptotic  Stabil i ty  of Semi-Groups 

In   t he   p reced ing   s ec t ion   t he   s t ab i l i t y   p rope r t i e s  are d e f i n e d   i n  terms 

of t he  semi-group proper t ies .  Thus, when t h i s  semi-group is generated  by  an 

operator ,  i t  is i n  terms of the   so lu t ions   t o   t he   ope ra to r   d i f f e ren t i a l   equa t ion .  

However, r a the r   t han   f i r s t   so lv ing   t he   equa t ion ,   one  would l i k e   t o   b a s e   t h e  

s t a b i l i t y   p r o p e r t i e s  ,of the   sys tem  d i rec t ly   on   the   p roper t ies  of the   opera tor ,  

i*e., to   de te rmine   condi t ions  fo r  the opera tor  so t h a t   t h e   s o l u t i o n s  exist and 

a t  the  same time are stable.   These  conditions are c l e a r l y   s p e l l e d   o u t  i n  t h e  

theorems i n  Chapter I V ,  Section B. 

It is i n t u i t i v e   t h a t   s t a b i l i t y  of a n u l l   s o l u t i o n   r e q u i r e s  A t o   b e   t h e  - 
infinitesimal  generator  of  an  equibounded semi-group. However, it is  not  so 

e a s y   t o  relate a sympto t i c   o r   exponen t i a l   a sympto t i c   s t ab i l i t y   d i r ec t ly   t o   such  

a basic   property.  However, once  the  contract ion  property is es tab l i shed  (IV-14) 

and (IV-15) of Corol lary IV-2 seem to  provide  the  answer.  

I n  Theorem IV-5 the   p r inc ipa l   cond i t ions  on A t o   g e n e r a t e  a cont rac t ion  - 
semi-group are t h a t  A is a d i s s ipa t ive   ope ra to r   w i th   r e spec t   t o   an   i nne r  

product < Y * >  and R(I - A) = H1 and consequent ly   the   nu l l   so lu t ion  is s t ab le .  1 " 

The d i s s i p a t i v i t y  is d e f i n e d   w i t h   r e s p e c t   t o   t h e   p a r t i c u l a r   i n n e r  

product of the   space ,   bu t   the  semi-group property is invariant   under   equivalent  

norming. In   genera l ,  a semi-group I T 1 is s t a b l e   i f  it is equi-bounded, i.e. , 
-t 

under  equivalent  norming  does  not  necessarily mean 

e 1 then I I I I corresponds  to  an  inner  product I, = 

I I W Y  def ine a Banach space.   ra ther   than a Hi lber t  
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The invariance of s tab i l i ty   under   equiva len t   nonning   sugges ts   tha t   i f  

- A is d iss ipa t ive   wi th   respec t   to   any   inner   p roduct   equiva len t   to   the   inner  

product   of   the   space,   then  the  diss ipat ive  property of - A w i t h   r e s p e c t   t o   t h i s  

inner  product is s u f f i c i e n t   f o r   s t a b i l i t y  and generat ion of a contract ion 

semi-group. For t h i s   r e a s o n   t h e   d i s s i p a t i v i t y  of A is extended as follows: 

Def in i t i on  V-4. L e t  H be a real Hilber t   space  with  inner   product  9 1 1' 

- A is d i s s ipa t ive   i n   t he   ex t ended   s ense  i f  and  only i f   t h e r e   e x i s t s  a s e l f -  

a d j o i n t ,   p o s i t i v e   d e f i n i t e ,  bounded l inea r   ope ra to r  - S EL(H,H) such  that  

L"" 

<x, "- S A - 5 0 5 E D(A) (V-9 1 
and - A is s t r i c t l y   d i s s i p a t i v e   i n   t h e   e x t e n d e d   s e n s e   i f  and  only i f   t h e r e  exists 

a B > 0 such  that  

" 

one  could  also c a l l A  d i s s i p a t i v e   i n   t h e   e x t e n d e d   S e n s e   i f   t h e r e   e x i s t s   a n  

equivalent  inner  product  with  respect  to  which - A i s  d i s s ipa t ive .  The following 

theorem follows d i r e c t l y  from Theorem IV-5. 

Theorem V-3. L e t  - A b e  a l inear operator   with ll (A) - = F! and R(A) C I1 and 

RQ - A) = H. Then - A generates a contract ion semi-group i f  and o n l y   i f  - A i s  

- =  

diss ipa t ive   in   the   ex tended   sense .  

Proof:  Since - A is d i s s ipa t ive   i n   t he   ex t ended   s ense   t he re   ex i s t s   an   i nne r  

product  with  respect  to  which - A is  d i s s ipa t ive .  The "if" p a r t  follows from 

- 

Theorem IV-5 by  using  this   inner   product  as the  inner   product   for   the  space.  

I f  - A generates  a con t r ac t ion  semi-group  according t o  I I I I * = 9 *> ,  

then - A is d i s s i p a t i v e   w i t h   r e s p e c t   t o  < e ) * >  and  hence is d i s s i p a t i v e   i n   t h e  
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extended sense. 

Remark: Theorem V-3 includes Theorem I V - 5 ,  i n   t h e   s e n s e   t h a t  - A is not 

d i s s ipa t ive   w i th  respect to   t he   o r ig ina l   i nne r   p roduc t  of the  space.  In! t h i s  

case  {xt;  t 0) is a t  least equi-bounded wi th   r e spec t   t o   t he  norm induced by 

the   o r ig ina l   inner   p roduct .  

- 

In  o rde r   t o   de r ive  some p r i n c i p a l   r e s u l t s  on t h e   s t a b i l i t y  and 

A Lyapunov func t iona l  on a real Hi lbe r t  space TI is defined  through  the 1 
symmetric, bi l inear   form,  

- S EL(E,H).  Define  the Lyapunov Functional by 

v (2) = V (& XE H. (V-12) 

The time de r iva t ive  of  v(x),  denoted by ;(x) - a long   so lu t ions   to  (V-1) 

with - A generat ing a semi-group{T -t' *t > = 0) C - L(H,H) i s  given by: 

1 
;(.> = l i m  y (V 5, xt x> - v ( 2 , ~ ) )  (V-13)  

ti-0 

and s i n c e  V ( 5 , y )  is symmetric it  fol lows  that :  

+(x> = l i m  f v ( (z t  + I> 2, (T - I) 5) 1 
t-to -t - 

= 2 V ( x ,  A x) (x E WA)) 0 - " 
This   l eads   to   an   impor tan t   resu l t :  
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Theorem V-4. L e t  - A be a l i nea r   ope ra to r   w i th  D(A) = H, R(&) 5 H, and 

R(r - A) = H. Then & is  an   i n f in i t e s ima l   gene ra to r  of a cont rac t ion  semi-group 

if and  only  i f   there   exis ts  a Lyapunov Zbnct iona lv(5)   such   tha t  

+(X) = 2V&, A 5) =< 0 - x E D@). 
Corol lary V-4.1. Under the   condi t ions  of Theorem V-4, t h e   n u l l   s o l u t i o n  of 

(V-1) i s  s t a b l e .  

- Proof: The "only i f   p a r t  cf t he  theorem  follows  from Theorem V-3 by taking 

v(.> as, 

v (5) = < x,g. 
I f   t h e r e   e x i s t s  a v(s)   g iven  by V(~f ,y ) ,   t hen   l e t  e ~ , y > ~  = V(x,y),  with - 

< 11, A p 2  5 0. Thus by Theorem V-3, s i nce  D(A) = H and R(L - A) = H ,  A 

generates  a Contraction semi-group {T t > 01 with  

- 

"t' = 

11&112 =< 1 t L - 0. 

This r e s u l t  imp l i e s  Corol lary V-4.1. 

The s ta tement  of the   theorem  ind ica tes   tha t   the   condi t ions   for   ex is tence  

and s t a b i l i t y  of t h e   s o l u t i o n s   t o  a gene ra l   ope ra to r   d i f f e ren t i a l   equa t ion  of 

t he  form (V-1) are much more r e s t r i c t i v e   t h a n  when  (V-1) represents  a f i n i t e  

dimensional  system  of  ordinary  differential   equations.  The f r ee   i n t e rchange  

of equ iva len t   i nne r   p roduc t s   can   f ac i l i t a t e   t he   i nves t iga t ion  of these  require- 

ment s. 

The following  theorem  points  out i ts  importance  for  the  case of 

asymptot ic   s tab i l i ty .  

Theorem V-5. L e t  A be  a l i nea r   ope ra to r   w i th  D(A) = H, R(A) $ H, R(I - A) = H. 
- 

- - " 

Then the  

Lyapunov 

n u l l   s o l u t i o n  of (V-1) is a s y m p t o t i c a l l y   s t a b l e   i f   t h e r e   e x i s t s  



- Proof:  Since a l l  the   condi t ions  d Theorem V-4 are s a t i s f i e d  it fo l lows   t ha t  

- A generates  a cont rac t ion  semi-group. To show t h a t   t h e   n u l l   s o l u t i o n  i s  

asymptot ica l ly   s tab le   no t ice   tha t   f rom 

2 ax) = 2V&, AX) =< - y 11x1 I l  
c e r ta in ly   fo l lows  

2 
V(X, A 2 9  = < X ,  A 2 2  5 - a 11x1 I, 

Next it must be shown t h a t   f o r  n 2 N > 0, t he   i nve r se  of (I - n A) exis t s   such  -1 - 
t h a t  

f o r  some 6. From t h e   r e l a t i o n  

i t  follows  from  Schwarz's  -inequality  that 

i 

and  theref   ore   that  

This is a s u f f i c i e n t   c o n d i t i o n   f o r   t h e   a s y m p t o t i c   s t a b i l i t y  of t h e   n u l l   s o h -  L 

t ion.  

Remark.  The above  theorems  can  similarly  be  stated  with  the  condition of - A 

being  closed  and  with  the  subsequent  modifications following the  theorems  of 

Chapter IV.  i 

I 

! 
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Note a l s o   t h a t   t h e  Lyapunov Funct iona l   g ives   on ly   suf f ic ien t   condi t ions  

f o r   s t a b i l i t y   o r   a s y m p t o t i c   s t a b i l i t y   r e s p e c t i v e l y .   T h i s  is a d i s t i n c t  

d i f f e rence  between t h e   s t a b i l i t y   p r o p e r t i e s  of  systems  having  the semi-group 

and  group proper t ies   respec t ive ly ,  a fac t   c lear ly   demonst ra ted   in   the   fo l low-  

ing   sec t ion .  It is foreseen   tha t  a s l igh t   concep tua l  change i n   t h e   s e l e c t i o n  

of t he  Lyapunov Functional may alleviate t h i s   d i f f i c u l t y .  

C. Necessary  and  Sufficient  Conditions  for  the  Exponential  

Asymptotic S t a b i l i t y  of  Groups 

In   the   p receding   sec t ion   the   suf f ic ien t   condi t ion   for   the   asymptot ic  

s t a b i l i t y  of  semi-groups i n  terms of i ts  in f in i t e s ima l   gene ra to r  was e s t ab l i sh -  

ed. T h i s   a p p l i e s   a l s o   t o  groups. However, the  group  property is the  funda- 

mental  property of  dynamical  systems f o r  which a Lyapunov s t a b i l i t y   t h e o r y   h a s  

been  developed  which  includes  both  sufficient and necessary   condi t ions   for  

s t a b i l i t y   o r   a s y m p t o t i c   s t a b i l i t y .  Thus, it is n o t   s u r p r i s i n g   t h a t   i n   t h e  case 

of groups  the  approach  developed in   the  previous  sect ion  can  be  extended  to  

include  the  necessi ty .   Again  the Lyapunov Functional  not  only  gives  necessary 

and s u f f i c i e n t   c o n d i t i o n s   f o r   s t a b i l i t y   o r   a s y m p t o t i c   s t a b i l i t y   b u t   g u a r a n t e e s  

a l s o   t h e   e x i s t e n c e  of the   so lu t ions .  

Theorem V-6. L e t  A be a l i nea r   ope ra to r   w i th  D(A) = H with  inner  product 

<. , > and  such  that R ( A  I - A )  = H f o r  real A and I A I s u f f i c i e n t l y   l a r g e .  

Then A is the   i n f in i t e s ima l   gene ra to r  of a group of exponen t i a l   t ype   i f  and 

only i f   t h e r e   e x i s t s  a Lyapunov Funct ional   v(x)  - = V(x "- x)  with 

V ( 2 , y )  = <x, 5 p 1  = < X, y>, where i s  a symmetric o r   s e l f - a d j o i n t  bounded, 

pos i t i ve   de f in i t e   ope ra to r ,  2 E L(H,H) and  such t h a t   f o r  some constants  a and 

B , a > B > O  

- 
- - 

1 " 
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- 2 W(X,X) -- - _< ;(s) = 2V(z, A 2) ,< - -2 6 V ( X , ~ > .  (xE.D(A)) - (V-15) 

- Proof: If t h e r e   e x i s t s  a V(x,y)  with  the  above  properties,   then l e t  

For 

and f o r  

Then with  Schwarz's  inequality: 

I I (I - n-'L)x 

n l N  > O ,  
- B  

-1 IIr- All2 2 
n 5 - N  - a 

Thus for 

-1 IIr- n A l l 2  2 1 - 

INr- n d A)-'] 

Therefore (L - n-l A1-l exis t,s and 

(V-16) 

! 

I 

53 

and t h u s  by Theorem IV-4 generates a group {T t E (-m, a)) which s a t i s f i e s  -t' 

From inequal i ty  (V-16) i t  fol lows by Corollary IV-2 t h a t  A generates  a semi- 

group {&; t 2 - 0 )  with 

Since I I I [ and I I I I are equivalent,   this  completes  the  proof of s u f f i -  

ciency. The o n l y   i f   p a r t  will be  demonstrated  by  construction of the   requi red  

Lyapunov Funct ional .   I f  - A genera tes   an   exponent ia l ly   asymptot ica l ly   s tab le  



group,  then i t  follows from Theorem I V - 1  t h a t   t h e  most general  group 

{&; t&(-w,-)} s a t i s f i e s  

-at -Bt 
m e  I l l i l l 1  IIr, XI11 e 

where (x) > Ff 2 1 2 m > 0, - > a > B > 0 and IlT+l l l  2 
" 

Next take  n 
V(n; x ,y)  =,/ < xt 5, 2 yq d t  (V-17) 

with n >O. Since ctx, Xt y >1 is for   each  t a numerical  value,  which is  

everywhere  defined  and  continuous on the  compact i n t e r v a l  [O,n] (V-17) can 

be   in te rpre ted  as a Riemann integral .   For   each  f ixed n, V(n; ~ , y )  i s  a 

symmetric b i l i n e a r  form,  which s a t i s f i e s  

0 

Next let  v(&y) = l i m  V(n; x,y), then  from (V-18) i t  fol lows t h a t  V(5,y) 
n- 

exists and i s  w e l l  defined, moreover 

and 

The symmetric b i l i n e a r   f u n c t i o n a l  V(z,y> s a t i s f i e s  a l l  the   condi t ions  

of t he  Lax-Milgram  Theorem, thus   t he re   ex i s t s  a uniquely  determined,  bounded, 

gymmetric, p o s i t i v e   d e f i n i t e   l i n e a r   o p e r a t o r  2 with 

wi th  

I Is 
Next let  v(x)  - = V(x,x). " Then the re  

s a t i s f i e s   t h e   c o n d i t i o n s  of Theorem 

ar 2 

remains t o  be  proven  that  (x) V(X, A 5) - 
V-6. But 
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The  ref  ore 
f 

l L  = - lim - < '.& x, & g l  ds 
t-tO t o  

But  since , e >  is  equivalent  to = V(. ,.), it  follows  that  there  exists 
u > fl > 0 such  that 

1 2 

- cNz,g f v (z, A rr, 2 - - B v <.,z) 
This  completes  the  proof  of  the  theorem. 

The  interesting  aspects  of  this  theorem  become  clear in Section VIII, 

where  certain  wave  equations  are  studied.  There,  the  difference  between  the 

stability  properties  for  the  semi-group  and  group  structures  are  demonstrated 

by  taking  the  same  simple  operator  studied in Section VI1 in a diffusion 

equation  setting,  and  in  Section VI11 in a wave  equation  setting. In the 

next  section,  the  formal  partial  differential  operator  is  synthesized  to  give 

the  appropriate  representation (V-1) 
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V I .  FORMULATION OF FORMAL PARTIAL DIFFERENTIAL OPERATORS AS 

UNBOUNDED OPERATORS AND THE SELECTION OF NORMS 

In   t h i s   chap te r   an  unbounded operator  - A is obtained  from a class of 

f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s .   T h i s  means t h a t  0 (A) - and :R (A) - are 

determined  along  with  the  transformation A x = f o r   c e r t a i n  5 
” 

This is  car r ied   ou t  by  means of a syn thes i s   p rocess .   F i r s t   t he   l i nea r  

space   i n  which the   opera tor  i s  defined is completed  by  introducing  generalized 

der iva t ives .  Some b a s i c   d e f i n i t i o n s  and lemmas from the  theory  of   dis t r ibu-  

t i o n s  are given.  Sobolev  spaces are introduced;   these  spaces  are s i g n i f i c a n t  

for   the   de te rmina t ion  of t h e  domain  and range of t he  unbounded operator.  The 

Sobolev  Imbedding Theorem is s t a t ed .  The chapter  concludes  with a discussion 

of some aspec ts   o f   the   se lec t ion  of  norms f o r   t h e   s t a b i l i t y  problem. 

A. Derivation of the  Different ia l   Operator   f rom  the 

Formal Partial  Dif fe ren t ia l   Opera tor  

The der iva t ion  of t he   fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r   i n   t he  

proper space s e t t i n g  is adapted  from  Dunford  and S c h ~ a r t z ‘ ~ ’ ) .  The real case 

is considered  only;  the  results  can  be  extended t o  the  complex case. 

1. Notations 

in tegers ,  1 J [ = k, min J = min ji, max J = max ji. The case J i s  
1 - < i l k   l < i l k  
” - ” 

vacuous is denoted by J = 0. The symbol Rn i s  the  real Euclidean  n-space. 

An index J will be   sa id   to   be   an   index   for  Rn i f  min J 2 1 and max J 2 n. I f  

x ER , so t h a t  x = (x1,x2, ..., x ) and J i s  an  index  for R , so  t h a t  

J = ( j l ,  . . . , j,), k = [J[ , then 5 will denote t h e  expression x 

- 
n n - - n 

J 
j l  x j 2  * . *  x.ilc* 
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The operat ions ax and a- of p a r t i a l   d i f f e r e n t i a t i o n  are sometimes a 
j 

a s  

written as a o r  a and a r e spec t ive ly .   I f  J is an index   for  Rn and 151 = k, 

t hen   t he   h ighe r   pa r t i a l   de r iva t ive  

xj j 

a k  
a x .  a X ... a x  

J1 j 2  jk 
will be  ca l led  a p a r t i a l   d e r i v a t i v e  of  order k = I JI and will be   wr i t t en  a . 
I f  I J I = 0 the   opera tor  a is defined as the   ident i ty   opera tor .  

J 

2. Formal Pa r t i a l   D i f f e ren t i a l   Opera to r  

I f  m is a pos i t ive   in teger ,   an   express ion  

where  the real c o e f f i c i e n t s  a are i n f i n i t e l y   d i f f e r e n t i a b l e   f u n c t i o n s   i n   a n  

open set Sl - C Rn, w i l l  be   ca l led  a formal   par t ia l   d i f fe ren t ia l   opera tor   def ined  

J 

- 
i n  Sl and m w i l l  be   ca l led   the   o rder  of T. - - 

T"(.) = 1 (-1) 3 [a (x) 1 J J  

I J IZ  J -  

is  ca l led   the   formal   ad jo in t  of T. I n   p a r t i c u l a r ,   i f  T = T* then T i s  ca l l ed  

formal ly   se l f -ad jo in t .   I f  

is a n o t h e r   f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r   d e f i n e d   i n  Q, then  for  func- 

t i ons  f which are i n f i n i t e l y   o f t e n   d i f f e r e n t i a b l e   i n  Sl, T (Tf) is a lso   def ined  
A 

i n  Sl. This is m i t t e n  

! 

! 
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Simi la r ly   t he  sum of T and $ is defined by 

Example VI -1 .  L e t  - x = (x1,x2,x3), then a p a r t i c u l a r  T can  have  the  following 

form: 

J 

prac t ica l   appl ica t ions , some 

Notice  that   the  elements .,(X), 0 rlJ If 4 can  be  zero, as is al(2).  In most - -  

components of a (x), 0 2IJ 15 4, w i l l  be  zero. J -  

T*(.) = 

a 4  

a x   a x  ax, 
( x ) ( * ) ]  - 3 3  

a x   a x ,  - 2  Ia2,1,1 - 2 La0,2,1  (x) - ( * ) I +  
1 2  2 

3. Function  Spaces C (R) and C 0 ( Q )  
k k 

L e t  R be  an  open set i n  Rn and R i ts closure.  Then the  set  of s c a l a r  
- 

func t ions  f defined on R with a l l  p a r t i a l   d e r i v a t i v e s  of order   not  more than 

k e x i s t i n g  and  continuous is denoted by C (R) .  The set Co(S2) consis ts   of  

t hose   func t ions   i n  C (Q) which vanish   ou ts ide  a compact subset  R' = s*, 5' is 

k k 

k 
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a proper  subset  of 52. Thus C,(R) C C (0). The set Ck(E) c o n s i s t s  of a l l  

functions  defined  on E having a l l  p a r t i a l   d e r i v a t i v e s  of orders  up t o  k inclu- 

sive a t  each  point  of R and   such   tha t   each   par t ia l   der iva t ive   has  a continuous 

ex tens ion   to  R. I f   t h i s  is the  case, a f (x) is def ined   for  x E 5 and I J 1: k J 

as the  extension by cont inui ty   of  a f (x)  from R t o  E. We accept  Co(Q)=Co(R); 

i f  f E Co(52) = C:(B), t h e n 3  f = 0 on A - R. 

k  k 

- 
- - - 

J k -  k - 
k 

The spaces C"(R) and C"(R) .are especial ly   important ;  0 

4 . Norm i n  C (R) , Ck(E) k 

C (R) i s  made i n t o  a F-space (a space  which  does  not   sat isfy k 

I I a21 1 = I a I I 1x1 I of   the  previously  defined norm propert ies ; .  I I I I F  so defined 

is  c a l l e d  a F-norm) as follows. L e t  K be  an  increasing  sequence  of compact m 

subse ts  of R o r  3. Suppose t h a t  K is such  that   any compact subset  of 52 m 

belongs  to  one  of  the 

c (R) , ~ ~ ( 5 )  p lace  k 

and def ine   the  F-norm 

sets Km. Then f o r  a func t ion  f i n  one  of  the  spaces 

of f by 

m k  
I l f l I c k =  c c c - 1 u ( f ;  J,m) . (VI-1) 

m = l  j = O  IJI=j 2m2jj! 1 + u(f;J,m) 

This  norm makes the   space   i n to  a complete F-space. I f  k < 03 and 5 is compact, 

but   not   otherwise,   the   space C (52) is a Banach space  under a norm equivalent  

t o   t h e  F-norm such as 1 I . I I Ck(E) = sup I a I . It is i n   t h e   s e n s e  of t hese  

k -  

l J l $  
norms tha t   r e f e rence  is made to   the  topology  of  C (52). 

5. D i s t r ibu t ions  

k -  

It is es sen t i a l   t o   app ly   pa r t i a l   d i f f e ren t i a l   ope ra to r s   t o   comple t e  

spaces,  i.e., to   spaces   with  e lements  which a l l  possess   the  necessary 
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d i f f e r e n t i a b i l i t y   r e q u i r e m e n t s   i n   o r d e r   t o   c a r r y   o u t  a l l  required  mathematical 

operations  properly.   Suppose,   that   the  operator 
A 

defined  for   each  funct ion f i n  C (R ) is considered.  This  operator T~ is a J 2  
0 

densely  def ined  in  L (R ) , the   space of a l l  funct ions f such  that  I f (x) I is 2 2  - 
Lebesgue in tegrable   over  R . But T~ is not  closed. L e t  T be i t s  closure,  

then D ( T )  conta ins   nondi f fe ren t iab le   func t ions .  Which non-different iable  

n 

funct ions? One might  expect  the answer to   be  those  (non-different iable)  

funct ions f such  that  a a f belongs  to  L (R ). Thus  one  should  be  able  to 2 2  
x1 x2 

def ine  a a for   every   func t ion ,   d i f fe ren t iab le   o r   no t ,  and i r r e s p e c t i v e  

of  whether a a f belongs  to  L (R ) or   no t .  Such a "derivative"  can no 

longer  be  an element of  any  space  of  functions,  but  can  only  be a "function" 

x1 x2 2 2  

x1 x2 

i n  some generalized  sense.  Laurent  Schwartz  has  developed a theory of such 

d i s t r i b u t i o n  F, defined by 
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i s  c a l l e d   t h e   d i s t r i b u t i o n   c o r r e s p o n d i n g   t o   f .  

If a d i s t r ibu t ion   co r re sponds   t o  two funct ions f and 8, then f = g 

almost  everywhere. 

Def in i t i on  VI-3. A d i s t r i b u t i o n  F which  corresponds  to a func t ion  f i n   t h e  

sense of Def in i t i on  VI-2 i s  s a i d   t o   b e  a function. If f is continuous, 

d i f f e ren t i ab le ,   be longs   t o  L ( Q ) ,  C" (Q) ,  C;(O), etc., F will be   s a id   t o   be  

cont inuous,   d i f ferent iable ,   belong  to  L (a ) ,  C (91, C i ( Q ) ,  etc. respect ively.  

2 

2 k 

Thus a d i s t r i b u t i o n ,  which is a funct ional ,  is i den t i f i ed   w i th   t he  

function  to  which i t  corresponds.   The  introduction of d i s t r ibu t ions   enab le s  

one, as will be  seen later,  to   formula te  a p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  i n  

a complete   funct ion  space,   in   par t icular  a Hilber t   space.  The following 

d e f i n i t i o n  shows how a d i s t r i b u t i o n  may b e   d i f f e r e n t i a t e d   p a r t i a l l y .  

Def in i t i on  VI-4. L e t  T b e  a fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r   de f ined  i n  an 

open subset  R of Rn, and  with real c o e f f i c i e n t s   i n  C"(S2). L e t  F be a d i s t r i -  

but ion in Q. Then T F will denote   the   d i s t r ibu t ion   def ined  by the  equat ion 

(TF) (4) = F(T"4) Q E c p ) .  

The f a c t   t h a t  4 +$I implies ~*liQ,= T*$ is t h e   j u s t i f i c a t i o n   f o r   t h i s   d e f i n i t i o n .  

Add i t iona l   j u s t i f i ca t ion   fo r   Def in i t i on  VI-4 is provided  by  the  statements  of 

n-t 

i 

i 

I 

the  following lemma: 

Lemma VI-1. L e t  52 be a subset  of Rn. 

i. If t h e   d i s t r i b u t i o n  F i n  n corresponds   to   the   func t ion  f in Cn(n) 

and if T is a fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r   o f   o rde r  a t  most n defined 

i n  0 ,  then rF corresponds  to  .cf. 
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ii. r (aF + BG) = aTF 4- BrG P,  G ED(Q) 

This lemma prov ides   t he   j u s t i f i ca t ion   fo r   add i t ion ,   mu l t ip l i ca t ion  by 

a scalar, d i f f e r e n t i a t i o n ,  etc., of d i s t r ibu t ions .   Addi t iona l   p roper t ies  can 

be  found i n  ( 2 9 )  . 
6 .  The Sobolev  Space 1I (Q) k 

The Sobolev  space H (52) cons t i tu tes   an   impor tan t  class of  subspaces of k 

D(Q), which are a t  t h e  same time spaces of functions.  The following lemma is 

elementary: 

Lemma VI-2. L e t  52 be an open subset  of Rn and l e t  F be i n  D(Q). Then F is 

a f u n c t i o n   i n  L (Q) i f  and  only i f   t h e r e   e x i s t s  a f i n i t e   c o n s t a n t  K such  that  2 

where I I @  I I = 1$2 d 2 with   the   in tegra l   t aken   in   the   Lebesgue  sense. 

Def in i t i on  VI-5. L e t  R be  an  open  subset of Rn and l e t  k be a non-negative 

2 

Q 

integer .  Then 

i. the  se t  of a l l  F i n  D(Q) such   tha t  a F is  i n  L ( Q )  f o r  a l l  J 2 

lJlr k w i l l  be  denoted  by H (Q). For  each real p a i r  F,G i n  II (52) we write k k 
- 

and 

I I F I  ( k  = (< F,F'k) 1 /2  (VI-2) 

ii. t h e  symbol Ho(Q) w i l l  denote   the   c losure  i n  t h e  norm of H (Q) of k k 

t h e  C i ( Q )  functions.  
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Lemma VI-3. L e t  Sl be   an  open set i n  R . Then the  space H ($2) of t h e  

preceding   def in i t ions  is a complete  Hilbert   space,   and  the  space H ($2) is a 

n k 

k 
0 

closed  subspace  of H ($2). k Moreover: 

0 0 Ho($2) = H (R) = 

Hk+'($2) C - Hk($2) 

Lema VI-4. L e t  T be a formal 

l e t  j > k. L e t  $2 be a proper 0 

($2) c - Hi(R) k - 2 0. 

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  of  order k and 

subset  of R ,  an open set i n  Rn, such  that  Eo is 

compact  and let  a (x)  belong  to C"($2), then F+TF where FEH j (ao) implies  

TFE Hjwk(Q0) and the  mapping is continuous. 
J- 

F E Hi (Eo) implies  TF E H i  (Slo) and t h e  mapping is continuous. 
'-k - 

7. Sobolev  Imbedding Theorem 

Def in i t ion  VI-6. L e t  p be a po in t  of the   subse t  A of Rn. Then A is s a i d   t o  

be smooth i n   t h e   v i c i n i t y  of p i f   t h e r e   e x i s t s  a neighborhood U of P and a 

mapping (p of U on a spherical  neighborhood V of the   o r ig in   such   t ha t  

i. (p is one-to-one, I$ is i n f i n i t e l y   o f t e n   d i f f e r e n t i a b l e ,  and +-' is 

i n f i n i t e l y   o f t e n   d i f f e r e n t i a b l e .  

ii. (p (AV) = V f l  i x E R lzl = 0). n - 
I f   t h e  set A is smooth i n   t h e   v i c i n i t y  of  each  of i ts  poin ts ,  i t  is 

s a i d   t o   b e  smooth, o r   t o   b e  a smooth surface.  

Theorem VI-1. L e t  Sl be a bounded set i n  Rn. Suppose t h a t  an is  a smooth 

su r face  and t h a t  no  point of the  boundary  of Sl is i n t e r i o r   t o  5. I f  2k > n 

a n d 0   c m c k - -  n 
2 then  every  derivative  of  order  not more than m of t h e  

d i s t r i b u t i o n  F E H ($2) is continuous  and  the  imbedding  operator  from €I (0)  k  k 

i n t o  Cm($2) i s  bounded  and  completely  continuous. 

I 

I 

! 

I 

I 

I 
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8. Different ia l   Operator   Representat ion 

In   o rde r   t o   app ly   t he   s t ab i l i t y   t heo rems  of Chapter V,  the  formal 

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  must be   ex tended   t o   he   de f ined   i n  a Hilber t   space,  

i.e., i n  a complete normed l inear   space,   wi th   the norm induced by  an inner  

product. The important  requirement is t h a t   t h e   s p a c e  of d i f fe ren t iab le   func-  

t i o n s  is complete, i.e., t h a t   t h e   o p e r a t o r ,  i ts  domain  and its range are 

def ined   in   such  a way t h a t  a l l  required  formal  mathematical  operations are 

va l id   wi th in   the   se t t ing   o f   the   space .  

T ~ ( T )  f = T f 

Then by Def in i t i on  VI-1 there   fo l lows   tha t  T1(?) = (TO(?*))*. Thus  by Corollarv 

111-1, Tl(f) is a c losed   ope ra to r   i n  L (Q). Moreover  by Lema V I - 1  TO(?)pC T1(?) 

is  a closed  extension of To(?). 

2 

Thus T l ( ~ )  operating  on  an  element  of D(T1(?)) ,C L (R)  w i l l  r e s u l t   i n  2 

an  element i n  L (Q). L (Q) is a complete  l inear  space.  The proper Hi lbe r t  

space   s e t t i ng  i s  obtained by def ining a norm, I I I IL2 = I 1 1 In, on I, (a)  based 

on  the  inner  product:  

2 2 

2 

and 

R 

(VI-4) 

In   o rde r   t o   de r ive   t he  unbounded operator  A from T1(') a domain and 

range i n   t h e   H i l b e r t   s p a c e  L (SI) must  be  specified. The requirement  of  the 2 
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exis tence of bounded de r iva t ives  and the   necess i ty   fo r  a proper   adjoint  

r e l a t i o n s h i p   f o r  A i n  t h e   H i l b e r t   s p a c e   s e t t i n g   d i c t a t e s  a l i n e a r   s u b s e t  of 

L2(Q) . These  requirements  can  be m e t  by spec i fy ing   the  domain as a, Sobolev 

space . 
For a fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r ,   t h i s   cou ld   l ead   t o  a 

s p e c i f i c a t i o n   f o r  A as: the   ope ra to r   i n   t he   H i lbe r t   space  L (Q) defined by: 2 

~ ( A ( T ) )  = O(A) = D(T1(~))fl H i ( Q ) f l  H 2k (Q) 

A f = T 1 ( ~ )  f , f E o ( A ) .  

Under these   condi t ions  R(A) w i l l  a l so   be  i n  L (a). 2 

Another way  of ach iev ing   t he   ad jo in t   r e l a t ionsh ip   fo r  A is by def ining 

g e n e r a l i z e d   d e r i v a t i v e s   i n   t h e   s e n s e   t h a t   i n t e g r a t i o n  by par t s   formal ly  carries 

through(30).  In  both cases it  p l a c e s   r e s t r i c t i o n s  on the   va lues  of t h e  

d i s t r i b u t i o n a l   d e r i v a t i v e s   o r   d e r i v a t i v e s  on t h e  boundary.  Thus i f  E=Q + a Q 

has  a s u f f i c i e n t l y  smooth  boundary, an, then  the  space HO(Q) has   (d i s t r ibu-  

t i ona l )   de r iva t ives  up t o   o r d e r  k-1 which  approach  zero as the  boundary is 

k 

approached i n  Q. 

A more de ta i l ed   d i scuss ion   conce rn ing   t h i s   fo rmula t ion   o f   d i f f e ren t i a l  

opera tors   in   the   appropr ia te   spaces   can   be   found  in  Dunford  and  Schwartz . 
This  development  allows us to   apply   the   s tab i l i ty   theory   deve loped   for   opera tor  I 

(29 1 

di f fe ren t ia l   equa t ions   in   Chapter  V t o  a class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  

that  can  be  placed i n  the   above   Hi lber t   space   se t t ing .  

I 

B. Select ion  of  Norms 
i 

It has   been   po in ted   ou t   tha t   s tab i l i ty  is defined  with  respect  t o  .a 

norm. However, it is obvious  that  i n  fo rmula t ing   t he   pa r t i cu la r   s t ab i l i t y  

problem  the norm cannot  be  chosen a t  random. In  many instances  one is a b l e  
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t o  select a norm i n  a n a t u r a l  way by cons ider ing   the   phys ica l   p roper t ies  of the  

system.  This  leads  for  the wave equat ion   to  a cons idera t ion  of the  energy 

which provides as t h e   n a t u r a l  norm the  L2-norm as defined by (VI-4) i. e., a 

Hi lber t   space   se t t ing .  

One the   o the r  hand, for   the   hea t   equa t ion   the   na tura l  norm is given by 

the  supremum of  the  temperature,   thus (VI-1) with J = 0. Other  examples  can 

be  given  where  the  natural  norm is not  induced by an  inner  product or  does  not 

sa t i s fy   the   para l le logram l a w .  

The s t a b i l i t y   t h e o r y  is based  on  the  Hilbert   space  theory  of  dissipa- 

t i v e o p e r a t o r s ,   t h e   g e n e r a t o r s  of cont rac t ion  semi-groups o r  groups. Thus the  

Hi lbe r t  space s t r u c t u r e  is e s s e n t i a l   f o r   t h e   s t a b i l i t y   t h e o r y .  

The s p e c i f i c  problem  considered  here   concerns  s tabi l i ty   with  respect  

t o   H i lbe r t   space  norm. Whenever t h e   n a t u r a l  norm does  not  correspond  to  an 

inner  product  one  can  only  draw  conclusions  about  the  stabil i ty  properties 

w i t h   r e s p e c t   t o   t h i s  norm i f  it is equiva len t   wi th   the   par t icu lar   Hi lber t   space  

norm f o r  which t h e   s t a b i l i t y  is determined. 

The role  Sobolev's Imbedding  Theorems  might p l a y   i n   r e l a t i n g   s t a b i l i t y  

p rope r t i e s   unde r   d i f f e ren t  norms, no t   necessar i ly   equiva len t ,  is suggested  for 

fu tu re   r e sea rch .  
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V I I .  STABILITY OF AN EVOLUTION EQUATION 

In   the   p rev ious   chapter  it was p o i n t e d   o u t   t h a t   i n   o r d e r   t o   d e f i n e  -c. A 

as an  operator  on a complete  space, i t  is necessary   to   in t roduce   d i s t r ibu t ions .  

& i s  then  defined  on some Sobolev  space. A is  thus   assoc ia ted   wi th   genera l ized  

func t ions  and t h e   c o n d i t i o n s   f o r , s t a b i l i t y   o f   t h e   s o l u t i o n s   o f  (V-1) must  be 

in t e rp re t ed  as s t ab . i l i t y   cond i t ions   fo r   t he   d i s t r ibu t ion   so lu t ions .  

4 

The Sobolev  Imbedding Theorem  makes it poss ib le  t o  determine Af and 

when the   s t ab i l i t y   p rope r t i e s   can   be   ex tended   t o   t he  Cj-norms. 

The D i r i c h l e t  .boundary v a l u e   p r o b l e m   f o r   s t r o n g l y   e l l i p t i c   p a r t i a l  

d i f f e r e n t i a l   o p e r a t o r s  w i l l  be   s tudied  to   demonstrate   this   development .   Sect ion 

A is devoted  to some b a s i c   p r o p e r t i e s   o f   s t r o n g l y   e l l i p t i c   f o r m a l   p a r t i a l  

d i f f e r e n t i a l   o p e r a t o r s .  The basic  theorems  concerning  the  formulation  of  the 

D i r i c h l e t  problem in   t he   d i s t r ibu t ion   s ense   conc lude   t h i s   s ec t ion .  

The a c t u a l   s t a b i l i t y  problem is so lved   in   Sec t ion  B. 

A. E l l i p t i c   P a r t i a l   D i f f e r e n t i a l   O p e r a t o r  

Def in i t ion  V I I - 1 .  L e t  

be a fo rma l   pa r t i a l   d i f f e ren t i a l   ope ra to r   o f   o rde r  p with real c o e f f i c i e n t s  

d e f i n e d   i n  a domain Q of Rn. Then i f   f o r  each  nonzero  vector 5 E R v7e have n 

the   opera tor  'I is  s a i d  t o   b e   e l l i p t i c .  

The boundary  value  problem to   be   d i scussed   cons iders   the   s t rongly  

e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s ,  i.e., those  operators  of  even  order 

f o r  which  Garding's  Inequality  holds. 
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Lemma V I I - 1 .  L e t  T b e   a n   e l l i p t i c   o p e r a t o r  of  even  order 2p with real  

coe f f i c i en t s   de f ined   i n  a domain Clo of Rn. L e t  Cl be a bounded  open set such 

and  suppose  that 

(VII-1) 

Then the re   ex i s t   cons t an t s  K < m and k > 0 such  that  

o r  < -Tf , f >  < - k < f , f >  < - k <  f , f>O.  O =  P =  

T is c a l l e d   s t r o n g l y   e l l i p t i c  and @II-3) is known as Garding's 

Inequal i ty .  

The nex t   s t ep  is t o  spec i fy  a d i f f e r e n t i a l   o p e r a t o r   f o r   T ( s t i l 1   w i t h o u t  

boundary  conditions)  which later might  be a candidate   for   the  c losed  extension 

of an   opera tor   assoc ia ted   wi th   the   Di r ich le t  problem. T1('c) is the   c losed 

operator   def ined by  (VI-3). 

Theorem VII-1. L e t  T be an e l l i p t i c  formal partial d i f f e ren t i a l   ope ra to r   o f  

even  order 2p, sat isfying  the  hypothesis   of  Lemma V I I - 1 ,  and d e f i n e d   i n  a 

bounded  domain R i n  Rn which s a t i s f i e s   t h e   h y p o t h e s i s  of t he  lemma. L e t  

T = T(T)   be   the   opera tor   in   the   Hi lber t  space L (R) defined by the  equat ions 2 

D(T(T))  = D(T) = D(Tl(r))nH! (Q)) (VII-4) 

Tf = Tl(T)f, f e D(T). 
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Then a(T),  the  spectrum of T, is a countable   d i scre te  set  of po in ts   wi th  no 

f i n i t e  limit po in t s  and f o r  X d 0 (T), R(X; T) i s  a compact operator.  

The r e s t r i c t i o n  of   the domain  of T t o  a subspace  of  the domain  of 

T 1 ( ~ )  by (VII-4)  makes R(X; T) a compact operator.  

Corollary VII-1. L e t  the  hypotheses  of Theorem VII-1 b e   s a t i s f i e d .  Then the re  

e x i s t s  a constant  K < Q) and a constant  k > 0 such  that  

< Tf,f>O I- K < f , f > O  2 k I If1 l 2  , f E D(T) (VII-5) 
P 

The next s t e p  is t o   s p e c i f y   t h e   a d j o i n t .  

Theorem VII-2. ' L e t  T b e   a n   e l l i p t i c   f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  of 

even  order 2p, defined i n  a bounded  domain R. Suppose the  hypotheses of Lemma 

V I I - 1  are s a t i s f i e d .  L e t  T and S be   ope ra to r s   i n   t he   H i lbe r t  space L2(R) 

defined by 

Tf = Tl(T)f, f d ( T ) ;  Sf = T1(r*)f, f ED@). 

Then T = S* and S = T*. 

Moreover we have  thus < Tf , g>o = < f , Sg>o f o r  any f E D(T) and 

g' E D ( S > .  

The D i r i c h l e t  problem  can  be  formulated as follows: 

Def in i t ion  VII-2. L e t  $2 be  a domain i n  Rn whose  boundary an contains  a p a r t  

r which is a smooth surface.   Suppose  that   no  point   in  I' is i n t e r i o r   t o  b . 
L e t  k be  a pos i t ive   in teger .  Then i f  f is i n  Ck-l(Z)  and 3 f (x) vanishes   for  

a l l  x E r and a l l  J with I J I 5 k - 1 w e  w i l l  s ay   t ha t  f s a t i s f i e s   t h e  

Dir ichlet   condi t ion  of   order  k on r o r   t h a t  f and its f i r s t  k-1 normal 

der iva t ives   vanish  on I' and w e  write: 

J - 
- - 
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(VII-6) 

Remark: The s u b s c r i p t  v in   the   p receding   formula   ind ica tes   the   derdvat ive  i n  

t h e   d i r e c t i o n  of the  normal   to  r. If r is a closed  rectangular  (n-1)-dimen- 

s i o n a l   h y p e r s u r f a c e   i n  R w i t h   s i d e  ri perpendicular   to   the  x -coordinate   axis  

then (VII-6)  becomes 

n 
i 

The following  theorems w i l l  i den t i fy   t he   ope ra to r  T wi th   D i r i ch le t  

boundary  conditions  with  an  appropriate  operator - A defined on d i s t r i b u t i o n s  and 

thus  closed. The no ta t ion  T ( T )  i s  used   fo r   t he   ope ra to r   i n   t he   H i lbe r t   space  

L (R) defined by the  equat ions 2 

D(T(.r)) = HE(R) n H2P(Q) 

(VII-7) 

T(T)f = .rf ; f E D(T(T) ) .  

From Theorem  VII-2 and t h e   f a c t   t h a t  H:(Q) f l  H2"Q) i s  a dense  subset 

of L (9), i t  fo l lows   tha t  T(T)  is a closed  operator.  

Theorem V I I - 3 .  L e t  T b e  a s t r o n g l y   e l l i p t i c   f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a -  

t o r  as given by ( V I I - 1 )  and s a t i s f y i n g  (VII-2). L e t  R be a bounded  subdomain 

5 C Q0. Let  a R b e  a smooth surface  and l e t  no p o i n t   i n  a R b e   i n t e r i o r   t o   t h e  

closure  of  R .  L e t  T and T be   ope ra to r s   i n   t he   H i lbe r t   space  L (Q) defined  by 

2 

- 
A 2 

the  equations: 
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A 
Then le t  W and 1.1 denote   the  operators  whose graphs are the   c losu res   o f   t he  

graphs  of T and T respec t ive ly .  Then 
A 

ii. o(W) is a countable   d i scre te  set of po in ts   wi th  no f i n i t e  limit 

poin t  . 
iii. If X k a(W), R(X; W) is a compact operator.  

iv .  I f  A c u (w) , R(X; W> is a continuous mapping on II?(Q) i n t o  

I-P+~P(Q) for   every  m 2 - o . 
v. I f  Wf is i n  Hm(Q) and i f  m 2 - [ ;) - p then f i s  i n  CP-'(E) and f 

s a t i s f i e s   t h e  boundary  conditions  defining D(T) s t a t e d  by  (VII-8). 

( [ e ]  means l a r g e s t   i n t e g e r ,  [5 TI = 5). 3 

A 
The opera tors  W and W are iden t i ca l   t o   t he   ope ra to r s   T (T)  and T(T*) as 

A 
defined by  (VII-7) respec t ive ly .  TJ and TJ are closed  operators .  The p rope r t i e s  

of t he   r e so lven t  of W are i n d i c a t e d   i n   ( i i i )  and ( iv )  . 
I n   t h e   c a s e  where T = T ~ C  a more e x p l i c i t   r e s u l t  fOllOv7S from  the 

theorem: 

Theorem VII-4. L e t  T be  a s t r o n g l y   e l l i p t i c   f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a -  

t o r  as given by (VII-1) and s a t i s f y i n g  (VII-2). L e t  Q be a bounded  subdomain 

5 C no. L e t  a R be a smooth surface  and l e t  no p o i n t   i n  a $2 b e   i n t e r i o r   t o   t h e  

closure  of R and l e t  T = v'c. L e t  T be   t he   ope ra to r   i n   H i lbe r t   space  L ( Q )  

- 
2 

defined by 
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L e t  W be   t he   c losu re  of T, then 

i. The operator  W is self-adjoint .  

ii. The spectrum a(W) is a sequence  of  points {Xn} tending   to  =, and 

f o r  X i n  p ( W ) ,  R(X; W) is a compact operator.  

iii. The operator  W has  a complete  countable set {I$ 1 of  eigenfunctions. n 

Each e i g e n f u n c t i o n   s a t i s f i e s   t h e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  

T I$, = X i$ i n  R ,  h a s   i n f i n i t e l y  many cont inuous   der iva t ives   in  

the 'c losure   o f   the  domain R,  and s a t i s f i e s   t h e  boundary  conditions 

def ining D(T) of  (VII-9). 

n n  

The r e s u l t s  of t h i s  theorem are important   for   the wave equation problem 

of  Chapter V I I I .  

B. S t a b i l i t y  of the  Solutions  to  an  Evolution  Equation  with 

S t r o n g l y   E l l i p t i c   P a r t i a l   D i f f e r e n t i a l   O p e r a t o r  

The Dir ichlet   boundary  condi t ions  appear   in  a l a r g e  class of boundary 

v a l u e   p r o b l e m s   f o r   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s .   I n   s t a b i l i t y  

inves t iga t ions  of sys tems  represented   by   par t ia l   d i f fe ren t ia l   equa t ions ,   the  

s t a b i l i t y   a n a l y s i s  i s  general ly   carr ied  out   for   systems  per turbed  f rom 

equ i l ib r ium.   In   t h i s  case one  can  often  introduce  zero  boundary  conditions. 

The formula t ion   of   the   genera l   condi t ions   for   the   s tab i l i ty   and  

ex is tence   o f   so lu t ions  to t h e  class of s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l  

operators  w i l l  cover a l a r g e  class of systems. 

Consider  the  system as formulated by (11-l), thus 

a t  = 
a U  L u = -  T U  (VII-10) 

where T is now a t ime- inva r i an t   s t rong ly   e l l i p t i c   fo rma l   pa r t i a l   d i f f e ren t i a l  

operator  of  even  order 2p with real coe f f i c i en t s   de f ined   i n  a domain 00 of Rn, 
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(VII-11) 

Then i n  any  bounded  open domain R ,  such   tha t  5 C_ Qo, Garding's  Inequality  holds 

f o r  a l l  u E c ~ ( Q ) :  

- 

c TU,U> + K< u,u> > k c u,u> 0 O =  P (VII-12) 

f o r  some K c a and k > 0. 

Next we  want t o   a s s o c i a t e   w i t h  L and thus T a Dirichlet   boundary  value 

problem. Hence l e t  R be a bounded  subdomain  of R w i t h   i n t e r i o r   t o  Roo. L e t  

a fl be a smooth sur face   wi th  no poin t  of 3 R i n t e r i o r   t o  52. Then  (VII-10) 

def ines   an   opera tor   d i f fe ren t ia l   equa t ion  

0 

T u = TU ; u E D(T). 

The s tabi l i ty   theory  developed  in   Chapter  V cannot  be  applied  to 

(VII-13)  even  though i t  is an   ope ra to r   d i f f e ren t i a l   equa t ion .   In   o rde r   t o  

ge t  (V-1) T must be  defined  on a complete  space  with  suitable norm. Introduc- 

t i o n  of d i s t r i b u t i o n s  and  Theorems  VII-3  provides t h e   a p p r o p r i a t e   d i f f e r e n t i a l  

operator  117, t he   c losu re  of T w i th   r e spec t   t o  L (Q), as 2 

And the   cor responding   opera tor   d i f fe ren t ia l   equa t ion  becomes 

d f  " = - W f  
d t  f E D(W). 
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Furthermore R ( W )  C_ L ( Q )  and  s ince I$(Q) is dense   in  L (Q) D(W) = L2(G'), thus 2 2 - 
- 

(VII-16) is an  operator   different ia l   equat ion,   associated  with  (VII- lo) ,   which 

belongs t o  t h e  class (V-1). 

Theorem VII-3 enables   us   to   def ine   the   ad jo in t   o f  W, I P ,  as the  
A A A A A 

c losu re  IJ of T where D(T) = D(T) and T u = T* u f o r  u E D(T).  Since T is 

s t r o n g l y   e l l i p t i c  TJX will a l so   be   s t rong ly   e l l i p t i c ,   t hus   s a t i s fy ing   Gard ing ' s  

Inequa l i ty   fo r  u E C,(Q). Replacing T by T* i n  Theorem VII-3 gives  

D(W) = D ( W )  = RE(Q) H (Q) = D(W). This is an  important  property,  to  be  used 

i n   t h e   f o l l o w i n g   s t a b i l i t y  theorem.  Notice  that i f  D(R)  = D(W*), then W is  

s e l f - a d j o i n t   i f  T = T* 

CD 

2p A 

It should  a lso  be  noted  that   the  imbedding  of the  closed  subspace 

H;(R) i n  L (Q) i m p l i e s   t h a t   t h e r e   e x i s t s  a constant C 2 1 such  that  2 
- 

< f,f> > C < f , f > O   f o r  a l l  f E HPo(n). (VII-17) 
P =  

Theorem V I I - 5 .  L e t  T be  a s t r o n g l y   e l l i p t i c   f o r m a l   p a r t i a l   d i f f e r e n t i a l  oper- 

a t o r  as defined  by (VII-ll), sa t i s fy ing   the   Gard ing   Inequal i ty  (VII-12). L e t  

T of (VII-14) be   the   opera tor   assoc ia t ing  T with a D i r i c h l e t  boundary  value 

problem,  and l e t  1.7 be   the   c losure  of T as defined by ( V I I - 1 5 ) .  

Then t h e   n u l l   s o l u t i o n  of 

- = -  d f  W f  d t  f E D(iJ) = H i ( Q ) f l  -H2'(Q) (VII-18) 

is asympto t i ca l ly   s t ab le   w i th   r e spec t   t o   t he  L2-norrn i f  a C > 1 can  be  found 

such   tha t  

O =  

i. 
2 2 I I f 1  l p  2 COI I f 1  Io f E D(W) ( V I  1-19 ) 

and 

ii. Cok - K ' 0 
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I 

where  k  and K are two constants   sat isfying  Garding 's   Inequal i ty   for  T. 

- Proof:  Define  the symmetric, b i l i nea r ,   pos i t . i ve   de f in i t e   func t iona l   V( f ,g )  by 

The Lyapunov F u n c t i o n a l v ( f )  is thus  def ined by 

v ( f )  = V(f , f )  = c f , f >  ff f E L (52). 2 
0 

Then i ( f )  = 2V(-Wf,f) = 2 <  -Wf,f>O  f E D(w). (VII-21) 

Since T s a t i s f i e s  (VII-12) we have by Corol lary V I I - 1 :  

< Wf,f>O + KC f , f > o  2 - k- < f , f >  8 f E P(W) 
P 

and with  (VII-19): 

< T J f , f > o  2 - (Cok - K) c f , f >  0 v f E D(W) (VII-22) 
e_ 

W is closed, and so is -W, D(W) = D ( - w )  = L (a) 
I 2 

c TJgcf,f>o = c f,TJf>o = < Wf , f>O 2 - (Cok - K) < f , f > O  (VII-23) 

f o r   a l l  f E 0 (W*) = (W) . For (Cok - K) > 0 9 W  is a one-to-one  mapping  from I 

HE(R) n H2"Q) i n t o  L ( Q )  and R(W) is closed. HE(Q) f l  H 2P (Q) is r e f l e x i v e  (23) , 
thus W* maps HZ(Q)n  H2P(R) i n t o  L ( Q )  and s ince  N(W*) = R(W) , t h e   a n n i h i l a t o r  

of R(W) i n  L ( Q )  , it  follows  from  the  closedness of R(W) t h a t  R(W) = N(TJ*) . 

2 

2 I 
I .  

2 1 

However, by (VII-23) a l s o  W* is one-to-one  and N(W*) = ( 0 )  , thus R (14) = L (Q)  . 
Subs t i t u t ion  of  (VII-23) i n t o  (VII-21) gives  

2 I 

f ( f )  = 2 < -Wf,f>O _< - -2(C k - K) < f , f > O  Vf E D(W). 
0 

(VII-24) 
c" 2 Thus f o r  COk-K > 0 the   opera tor  4 4  with D(-W) = L (n) is  s t r i c t l y   d i s s i p a t i v e  

and R (  I+W) = L (Q)  . Hence  by  Theorem V-5 the  Lyapunov F u n c t i o n a l   v ( f ) = <   f , f >  

a s su res   t he   a sympto t i c   s t ab i l i t y  of t h e   n u l l   s o l u t i o n  of  (VII-18).  Moreover, 

2 
0 
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-W generates  a semi-group t 2 0 )  i n  L (52) with 2 

I 
t '  - 

where a = COk-K. 

I n   t h e   s t a b i l i t y   a n a l y s i s   t h e   o b j e c t i v e  becomes thus  to  reduce <-Wf , f >  

t o   t h e  form - a< f , f >  The choice of t he  maximal Co which s a t i s f i e s  (VII-19) 

is very   impor tan t .   In tegra l   inequal i t ies  (31) are a v a i l a b l e   t o   f a c i l i t a t e   t h i s  

0 

0' 

reduct ion .   These   in tegra l   inequal i t ies  are t o  some extent  based on an estimate 

of the  eigenvalues.   In  Chapter I X  i t  w i l l  be  shown t h a t  a proper   se lec t ion  of 

v(f)   can  improve  considerably  the  effectiveness  of  the  use of these i n e q u a l i t i e s ,  

A s p e c i a l  case arises when T = T*. Then it  follows from Theorem VII-4 

that   the  spectrum  of W, uniquely  determined  since W = W, is a sequence of 

po in ts  {Xn)  tending  to  m. L e t  Xmin be   the smallest Xn;,then 

< f , f > o  _< < Wf,f>O v f E D m )  'min - 
Thus, i f  Xmin > 0 w e  g e t  

< - Wf,f>() _< - 'min - < f,f'O < 0 v f E O(W) 

and -W is s t r i c t l y   d i s s i p a t i v e .  However, the  determination  of  the  eigenvalues 

is general ly   not   easy,   especial ly  when t h e   c o e f f i c i e n t s  of T depend on t h e  

system  parameters.  In many such  cases   integral   inequal i t ies   might   be  used more 

eas i ly .  

The ques t ion   can   be   ra i sed   i f  similar r e su l t s   can  be  der ived  for   the 

a sympto t i c   s t ab i l i t y  of t h e   n u l l   s o l u t i o n   t o  (VII-16) wi th   respec t   to   the  If"- 

nom.  This  question becomes important when the  Sobolev  Imbedding Theorem is 

used to   deduce   s t ab i l i t y   p rope r t i e s   w i th   r e spec t   t o  a Cj-norm. 

From Theorem V I I - 3  fo l lows   tha t   the   c losure  of T i n  H2m is For 
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i 

and g iv ing   fo r  a l l  f E D(W2,) 

lJ2rnf,f>2m + K< f , f>2m 2 - k < f,f>2rn+p.  (VII-25) 

This   gives  rise t o  the  fol lowing  conjecture:  

j 

Conjecture V I I - 1 .  L e t  W2rn be  the  c losure  of  T, as defined by  (VII-14),  with 

r e spec t   t o  H (Q). Then t h e   n u l l   s o l u t i o n  of 2m 

is asymptot ica l ly   s tab le   wi th   respec t   to   the  H2m-norm i f   t h e r e   e x i s t s  a 

C2rn 2 1, s a t i s f y i n g  

and 

ii. ‘2rn k - K > O  

where k and K are the  constants   sat isfying  Garding’s   Inequal i ty   for  T. 

The de r iva t ion  of t h i s   r e s u l t  is analogous  to  the  proof  of Theorem 

VII-5 

Then f o r   s u f f i c i e n t l y   l a r g e  2m 2 - [$I + j + 1 it follows from  Sobolev’s 

Imbedding Theorem t h a t  f E H2m(fl) implies  f ECj(E)  and 

I l f l  I d ( , )  2 CI I f 1  I,, 
where c is a pos i t ive   cons tan t .  
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However, f o r  some i n i t i a l   f u n c t i o n  foE D(W2m) = HEh (Q)n €lo (Q), T f 

remains i n  D(W ) f o r  t 2 0(23), T is the  semi-group  generated by W2m. Thus 

f o r   s u f f i c i e n t l y   l a r g e  2m - 2p + j + 1 it follows by  Sobolev’s  Imbedding 

Theorem, t h a t  T f E I€ (Q) i m p l i e s   x t f 0  E C ( E )  and 

2p+2m 
“t, 0 

2m - “t 
n 

- 
2m+p j 

“t 0 

where c is some posi t ive  constant .  Thus any  asymptot ical ly   s table  semi-group 

t r a j e c t o r y   i n  H 2*2p(S2) should   be   asymptot ica l ly   s tab le   in  C j ( 5 ) .  
1 

Next consider as a s p e c i f i c  example a d i f fus ion   equat ion  

(VII-26) 

where c is a pos i t ive   cons tan t   and  b is a constant,  0 5 x 5 1. Assume t h e  

boundary  conditions  to  be  u(t ,O) = u ( t , l )  = 0. (VII-26) i s  thus  formulated as 

the  Dir ichlet   boundary  value  problem  for  a second   o rde r   pa r t i a l   d i f f e ren t i a l  

equation  defined  on [0,1] of R . The r e s u l t s  are compared i n  Chapter V I 1 1  

wi th   those   ob ta ined   for   the  case where L = -c - + b is t a k e n   i n   t h e  wave 

” 

1 

a 2  
a x  2 

equat ion  representat ion.  

a 2  

a x  
Here T = -c - 2 + b = T* is a s t r o n g l y   e l l i p t i c   f o r m a l l y   s e l f - a d j o i n t  

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r   d e f i n e d  on [0,1]. 

(VII-26) is assoc ia ted   wi th   the   c losed   se l f -ad jo in t   opera tor   d i f fe ren-  

t i a l  equation  of class (V-1): 

“ = - W f  d f  
d t  f E D(W) 

W f = T f  f E D(W). 

(VII-27) 



Take as Lyapunov Functional: 

v(f)  = < f , f >  = I If1 l o  f E P(W)  2 
0 

eva lua t ing   c ( f )   on   the  Ci([O,l]) funct ions 

1 1 (s)2 d x 2  IT^ JLf2 d X 
I 

0 
- 

0 

t o  

+ -2(c n + b) 1 f d X = -2(c R 4- b ) <  f,f> 2  2 - - 
0 0' 

I A s u f f i c i e n t   c o n d i t i o n   f o r   t h e   a s y m p t o t i c   s t a b i l i t y  of t h e   n u l l   s o l u -  

t i o n  of  (VIII-27) is thus 

c n 2 + b >  0. 

O r  s i n c e   f o r   t h e   s t r o n g   e l l i p t i c i t y  of T , C  > 0 is required: 

c > O  and b > - c . r r .  2 

Thus "w generates a semi-group { T t 2 0 )  i n  L ([O,l]) which is bounded by: 2 
,t ' - 

where 2 a = b + n  C. 

The r e su l t s   ob ta ined  are i d e n t i c a l   t o   t h o s e   o b t a i n e d  by eva lua t ing   the  

eigenvalues  of -T. These are 

h n = b + c n  IT (n = t 1, 2 2, ....> 
Negative b are allowed as long as b > -c IT , s i n c e  c ( -) + bf2  = 0, implies  2 a f  2 

3 X  

79 

1 I I .  



V I I I .  STABILITY OF WAVE EQUATIONS 

I n   t h i s   c h a p t e r   t h e   s t a b i l i t y   p r o p e r t i e s  of an  important class of 

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  w i l l  be   inves t iga ted .  Vave equations  appear 

f requent ly   in   the   mathemat ica l   representa t ions  of physical  systems. The 

development  of a Lyapunov Funct iona l   for   th i s   sys tem is sketched  in   Sect ion A. 

Spec i f i c   app l i ca t ions  are g iven   i n   Sec t ion  B. The formulation of t h e  Lyapunov 

Functional  and its d e r i v a t i v e  show that  the  system  possesses  the  group  property 

r a the r   t han   t he  semi-group property,  and thus  necessary and suff ic ient   condi-  

t i o n s   f o r   s t a b i l i t y   c a n   b e   e s t a b l i s h e d .  

A. Development  of a Lyapunov Functional 

The fol lowing  formal   der ivat ion  of  a s u i t a b l e  Lyapunov Functional,  

not   mathematical ly   r igorous,   const i tutes   an  important   s tep  in   solving  the 

problem  of   asymptot ic   s tabi l i ty   for   the wave equation  with Lyapunov’s Direct  

Method. L e t  us   consider   the  s imple wave equation 
2 

a u  2 3 u  
2 3 t  a x  

- + a  e + b u - c - -  - 0  
3 t2 

(VIII-1) 

with a, b,  and c pos i t ive   cons tan ts .  L e t  x be  normalized  to   the  interval  

[0,1]  and  assume  u(t,O) = u ( t , l )  = 0. Under these  assumptions  one  expects 

t h e   n u l l   s o l u t i o n  u = 0 to   be   asymptot ica l ly   s tab le .  However, i f   t h e   t o t a l  

energy  of  the  system is chosen as Lyapunov func t iona l  
1 I 

v(u)  = I { (  e ) 2  + b  u + c (  ”> Id x 2 3 u  2 

0 a x  (VIII-2) 

.. then,  with  the  assumption  that   the  derivative  can  formally  be  determined: 
1 I 

ir(u) = -2a I ( -) d x. 
0 

a U  2 
a t  

Since +(u) is only   nega t ive   semi-def in i te ,   the   nu l l   so lu t ion  u = 0 is assured 

to   be   s tab le   bu t   no t   asymptot ica l ly   s tab le .  
- 
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A similar r e s u l t  follows i f  o n e   i n t e r p r e t s  (VIII-1) i n   t h e   c o n t e x t  of 

a d iss ipa t ive   sys tem  (24) .  Here (VIII-1) is w r i t t e n  as 

a 2  
a t  -- - = L u  

w i t h  

; L =  - 
-66 - a  

Thus the  choice  of  (VIII-2) as Lyapunov Funct ional  i s  apparent ly   not  

t he   co r rec t   one   fo r  showing  asymptotic s t a b i l i t y .  The  problem is  t o  select a 

Lyapunov Funct ional   v(u)   with a n e g a t i v e   d e f i n i t e  t i m e  derivative. 

The procedure   for   the   cons t ruc t ion  of  such a Lyapunov Funct ional  

fo l lows   to  some exten t   the   cons t ruc t ion  of Lyapunov func t ions  for systems of 

l i n e a r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s  (2) . 
Notice  that   (VIII-1)  can  formally  be  solved by a sepa ra t ion  of vari- 

ables  argument(32).   Putting  u(t ,x) = T ( t )  X(x) (VIII-1) can  be  replaced by 

i 

the  system of equations: 

d 'T - + a - + X T = O  dT 

d t   d t  
and 

d 2X 

dx 2 c - + b X - A X = O  

and  boundary  conditions X(0) = X(1) = 0. 

(VIII-3) 

. ." 

Suppose t h a t   t h e  second  equation  of  (VIII-3) i s  solved and a '4 = 
li- A1 

is determined.  For t h i s   p a r t i c u l a r  example X will b e  real, because  the 

d i f f e r e n t i a l   o p e r a t o r  is se l f -ad jo in t .   Subs t i tu t ion  of X1 i n  t h e   f i r s t  equa- 

1: 

1 
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t i o n  of (VIII-3) gives: 

2 - d T + a -  d T + A I T = O .  
d t 2   d t  

This is a second  order   l inear   o rd inary   d i f fe ren t ia l   equa t ion   wi th  real 

c o e f f i c i e n t s   t h a t   c a n   b e   w r i t t e n  as: 

o r  d T  
- = F T  d t  - - 
- 

T2 - = -  
d t  A1 T1 - a T 2 

The construct ion of a Lyapunov func t ion   for   th i s   sys tem  fo l lows   the   usua l  

procedure. L e t  

V(T) = TT P T 
I ” 

where - P is symmetric and XT denotes   the  t ranspose of T then - 
‘(2) T T 

= T  (F P + P F ) T = - T  O T .  T 
d t  - - - -” - ” 

The system is  asymptot ica l ly   s tab le  i f  f o r  a p o s i t i v e   d e f i n i t e  symmetric mat- 

r i x  Q, P as a so lu t ion   t o   t he   ma t r ix   equa t ion  
” 

is uniquely  determined by Q and is p o s i t i v e   d e f i n i t e  symmetric when9  is. - 
- Q is usual ly   taken as the   i den t i ty   ma t r ix .  Here t h e   o b j e c t i v e  is, however, 

t o  i d e n t i f y  A1 with L = - c a - + b,  and  v(u)  and  +(u)  should become 

quadratic  forms  which are equ iva len t   t o   t he  same norm, or  can  be  reduced  to 

2 a x  

equivalent  norms. Thus l e t  
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then P follows as - 

- P =  

2X1 + a , a 2 

a s  2 

The n e x t   s t e p  is t o   i n t e r p r e t  - P and - Q i n  terms of  L. The first 

consequense is t o  write (VIII-1) as 

where 
0 

-L , -a 
, 

Next v(u) must b e   p a t t e r n e d   a f t e r  V(T) = - T I  " P T by rep lac ing  X1 with L and a t  

the  same time taking  the  L2-inner  product.  Thus 

In t eg ra t ion  by p a r t s  and subs t i t u t ion   o f   t he  boundary  conditions  gives 

1 
v(U) = I (2 c ( )2  + 2 b u: + a ul + 2 a u1u2 + 2 u2)d x.(VIII-5) 2 2 

0 a x  

With a, b and c > 0, (VIII-5) is equ iva len t   t o   t he  norm of the  product  space 

For   the case of s e l f - ad jo in t  L, ;(u) can b e   r e l a t e d  t o  
- - d t  . 

I n  this p a r t i c u l a r  example 

4(u)  = -2a :xT [; g~ d x = - 2a I (c (-1 a u 1 2  + bul 2 2  + u23d X. (VIII-6) 

Thus S(u)  is equ iva len t   t o   t he  norm of the  product space H ([O, 11 ) x 13 ([O , 11) 

0 0 a x  

1 0 
0 0 - 
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For nonself-adjoint  operators L (VIII-5) can s t i l l  be  taken as Lyapunov 

funct ional ,   but   C(u)  - must formally  be  evaluated. An example is the  panel  

f l u t t e r  problem  analyzed  by  Parks(16). The  Lyapunov func t iona l   der ived  by 

solving a v a r i a t i o n a l  problem is exact ly   equal   to   (VIII-4)   with L replaced by 

the   appropr i a t e   d i f f e ren t i a l   ope ra to r .  

The Lyapunov Functional  developed  above  enables  the  formulation  of  the 

s t a b i l i t y  problem f o r   t h e  wave equa t ion   i n  terms of the  hypotheses of Theorem 

V-6. Hence w e  are a b l e   t o  show not on ly   t ha t   t he   so lu t ions  are asymptotically 

s t a b l e   b u t  exist and sa t i s fy   the   g roup   proper ty .  

Some app l i ca t ions  are g iven   in   the   fo l lowing   sec t ion .  

B. Appl ica t ion   to  a Class of E l l i p t i c   P a r t i a l  

Di f fe ren t ia l   Opera tors  

Consider  the  general  system  equation: 

2 
a - U + a - + L u = ~  a U  

a t  a t  
(VIII-7) 

with a constant  a > 0 and L = 'c is a s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l  

operator  of  even  order 2p with real  coef f ic ien ts   def ined  and  uniformly bounded 

i n  a domain R of Kn: 0 

(VIII-8) 

and le t  r = T*. Then i n  any  open  bounded  domain R such  that  C Ro Garding's 

Inequa l i ty  w i l l  ho ld   fo r  a l l  u E C;(Q)  : 

- 

< TU,U> 0 + K<u,u> > k a , u >  O =  P 
f o r  some constants  K < m and k > 0. 
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With L is aga in   a s soc ia t ed  a boundary  value  problem.  Thus R i s  a 

bounded  subdomain  of 52 with E i n t e r i o r   t o  51 L e t  a R b e  a smooth s u r f a c e  

with no point   of  a R i n t e r i o r   t o  E. Then T def ines  a d i f f e r e n t i a l   o p e r a t o r  T 

0 0' 

T u = T u ; u d ( T )  (VIII-10) 

T is again  not  defined  on a complete  space. I n   o r d e r   t o   g e t   t h e   p r o p e r  

d i f f e r e n t i a l   o p e r a t o r  we in t roduce   d i s t r ibu t ions  and le t ,  by Theorem VII-4, TJ 

b e   t h e   c l o s u r e  of T w i th   r e spec t   t o  L (Q) so t h a t  \J is se l f - ad jo in t  2 

d2f d f  - + a - - t - W f = O  f E V(W) . 
d t 2   d t  

From Corollary V I I - 1  i t  fo l lows   t ha t   fo r  a l l  f d ( W )  

(VIII-12) 

(VIII-13) 

Then  (VIII-12)  can a l s o   b e   w r i t t e n  as 

where 

; w = - 

, 

0 

-w 
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- 

Since t '1 
" 
(rl f = I f 2  

Theorem V I I I - 1 .  L e t  W(VII1-11) be   t he   c losed   s e l f - ad jo in t   d i f f e ren t i a l  

operator   associated  with  the  Dir ichlet   boundary  value problem fo r   t he   s t rong ly  

e l l i p t i c   f o r m l l y   s e l f - a d j o i n t  T as given by (VIII-8) ,   then  the  nul l   solut ion,  

" 
f = 0, of the  system 

(VIII-16) 

is a s y m p t o t i c a l l y   s t a b l e   i f  a > 0 and i f   t h e r e   e x i s t s  a Co > 0 s a t i s f y i n g  

f l  E D(W) (VIII-17) 

ii. k - - >  E > O  K (VIII-18) 
cO 

where E > 0 and k and K are the   cons tan ts   sa t i s fy ing   Gard ing ' s   Inequal i ty   for  

(VIII-9) . (U generates  a group of exponent ia l   type in H;(Q) x ~ ~ ( 0 ) .  0 - 
Proof: As the   der iva t ion   in   the   p receding   sec t ion  shows, def ine  a b i l i n e a r  - 
func t iona l  

with 

S ince   t he   coe f f i c i en t s  of L are uniformaly bounded  on R t h e r e  exists a constant  

kl > 0 such   t ha t  by Schwarz's  Inequality: 
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with   the   inequal i ty :  

2 l a  b[ 5 - ( w  a2 + w-’ b2) 

which is v a l i d  when w > 0, there   fol lows 

Thus f o r  D 2 - k2 max(w+l, l+w-’) > 0 the re  follows 

A 

. I V ( L ’ d  1 2 D l  I r l  Ip,o I Is1 Ip,o 

where 1 I I I denotes   the norm induced by the  inner  product:  
P ’ 0  

for  a l l  2,g i n  c ~ ( Q >  x c0 (Q). 

Furthermore V(f,f) = 2 < f l,Lf l>o + a < f f > + 

Eo 

A 2 
1’ 1 0 

+ 2a<  fl,f2>0 + 2 <  f2 , f2>0 - 
With Garding’s  Inequality ( V I I - 9 ) :  

A 
V(f,f) 2 2k < f f > - 2K< f f > + a < fl,fl>O 2 

- 1’ 1 p 1’ 1 0 

.. . .  + 2 a < f   f >   + 2 < f  f > 
1’ 2 0 2’ 2 0 - f E c p >  x c p ) .  

And with ( V I I I - 1 7 )  and ( V I I I - 1 8 )  

( V I I I - 1 9 )  

+ 2 <  f2’f2>0 - f E c p )  x c;(Q>. 
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Thus with E > 0 and a > 0 t h e r e   e x i s t s  some constant   d  > 0 such  that  

2 A 
V(f,f) 2 dl Irl Ip,o f o r  a l l  - f E c~(Q> x c;(Q) 

A 
By con t inu i ty  V(f,g) can  be  extended  to a l l  of H:(Q) x Ho(Q) = H(Q) 0 

I 



V(f, [CI f )  = -a< fl,W fl>O + 2<  fl,W f > -t- a < f f > - - ” 2 0  1’ 2 0 
2 

2 - a < f  f >   - 2 < f   W f >   + a < f , f >   - 2 a < f  f >  = 1’ 2 0 2’ 1 a 2 2 0  2’ 2 0 

= -a< fl,K fl>O - a f 2Sf2’0 - f E D ( t J )  - 

i f  W is self-adjoint .   Since 

k l < f  f >   > < W f   f >  > ~ < f  f >  l ’ l p =  1 ’ 1 0  = 1’ 1 p f lE D (W) 

then ,   for  any a > 0, 

-e I 1 ~ 1  =< +(g) = 2 v ~ ~  f , f )  2 -E] I 2 f ED((U1 
“- - - P,O - 

f o r  some cons tan ts  e and E, e > E 0. Hence t h e r e   e x i s t  some cons tan ts  

e E 
d D > 0 and B = - > 0, a > B > 0 such  that  a = -  

- aV(f ”- f )  = < t ( f )  < - B V(f,fJ f E D(01 (VIII-24) - =  - - 
In   o rde r   t o   app ly  Theorem V-6, there   remains   to  show t h a t  R(X ” I - (‘J) H;(Q) 

x Ho(Q) f o r  real A and I X  I s u f f i c i e n t l y   l a r g e .  Take  any vec tor  

g = col(gl,g2) i n  H:(R) x HO(R) ,  then we must show t h a t   f o r  1 X 1  l a rge   t he re  

exists an - f E HE(R) H 2P (n) x Hg(Q) such   tha t  (X - I - ” (!I) f = e. Thus let:  

0 

0 

0 X f l  - f 2  = g1 Hg(Q) - Ho (Q) 

W f l +  (X + a) f 2  = g2 E HO(R) 0 

s ince  f E HP(R) , f2E HO(R) , t hus   subs t i t u t ion  of f 2   i n   t h e  second  equation 

gives  

0 
2 0  

W f l  + X (X + a) f l  = (X + a )  g1 + g2 = g E HO(R).  0 

For I X I s u f f i c i e n t l y   l a r g e  X (X + a )  is always  posi t ive  for  X > 0 and X 0. 

I n  Theorem VII-5, i t  has  been  proven  that R(W) = HO(R).  From the   s ta tements  

of t h e  theorem it fo l lows   t ha t  R (W + X (X + a )  I) = HO(R) f o r  I X I s u f f i c i e n t l y  

large.  And thus  R(X I - (11) = H:(S2) x Ho (R) f o r  I X I s u f f i c i e n t l y   l a r g e .  Thus 

0 

0 

0 
” 
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! 

by Theorem V-6 ({I generates  a group  of  exponential  type {T t E (-m,m )) i n  

HE(G!) x Ho(Q) and the re   ex i s t   cons t an t s  m > M > 1 > m > 0 such   tha t  

-t ' 
0 

" 
" 

And the   cond i t ions   fo r   a sympto t i c   s t ab i l i t y   o f   t he   nu l l   so lu t ion  g = 2 of 

(VIII-16) are thus a > 0 and k - - > E > 0 f o r  some small E > 0 where k and 

K are the   cons t an t s  from  Garding' s I n e q u a l i t y   f o r  T , and C is a constant  

given by the  estimate 

cO 

0 

This  completes  the  proof  of  the  theorem. Thus t h e  main  computational  difficul-  

t y  is f ind  maximum values  of k, Co and minimum values  of K. 

Next consider   the wave equation 

2 a u  

a t 2  a t  a x  

2 
3 2  + a - - c a 3 + b u = O  (VIII-25) 

with a, b and c constants ,  0 ,<x 5 1. And assume  boundary  conditions 
" 

I u(t,O) = u ( t , l )  = 0. The  corresponding  representation of (VIII-25) i n  terms 

I of a closed  operator  I$ gives 

with 

d f  
- =  [rl f d t  -- 
- 



By Theorem V I I I - 1 ,  the   condi t ions   for   the   asymptot ic   s tab i l i ty  of t h e   n u l l  

so lu t ion  f = 0 are a > 0 and < W f f > > E e f f > 
” 1 ’ 1 0 =  1 ’11’  Thus evaluat ing 

1 
W fl,fl>o = 1 {- c a*L f l  + b f 1 d x on  the C;([O,l]) func t ions   g ives  

2 
1 0 a x  

- > E e fl ,f l>l + ((c - €In2 + b - E )  < fl,fl>O - 

where the   i nequa l i ty  

0 0 

has  been  used. Thus t h e   n u l l   s o l u t i o n  to  (VIII-25) is asympto t i ca l ly   s t ab le  

f o r  a > 0 and lim {(c  n + b) - c(n2 + 1 ) )  > 0. 2 

Hence f o r  c > 0 and b > - .rr2 c, w i l l  generate  a group (T t E ( -OD, m) ) of 

the  exponent ia l   type  in  Ho(Q) x Hg (a>. 

€4 

“t ’ 
1 0 

The cond i t ions   fo r   a sympto t i c   s t ab i l i t y  are thus   i den t i ca l   t o   t hose  

found fo r   t he   d i f fus ion   equa t ion   i n   Chap te r  V I I .  The s o l u t i o n   t o   t h e  wave 

equat ion  possesses   the  group  property,   whi le   the  solut ion  to   the  diffusion 

equation  possesses  only  the semi-group property.  

The eigenvalues X f o r  (VIII-3) were determined i n  Chapter V I 1  as 

S u b s t i t u t i o n   i n   t h e   f i r s t   e q u a t i o n  of (VIII-3)  gives 
.. 

- +  d LT a d -  d T  (b + cn 2 2  IT ) T=O n = 1, + 2, 
d t 2   d t  

- - 
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The eigenvalues p (n)  and  p2(n> f o r   t h e   c h a r a c t e r i s t i c   e q u a t i o n  are thus 1 

(n) = - & a + L  a2 - 4 (b -t- cn T ). 
2 2  

Vl, 2  2 - 2  

I 

I 

Since   the   condi t ion   for   asymptot ic   s tab i l i ty  is R e  p(n) < 0, i t  fo l lows   tha t  

a must s a t i s f y  a > 0. For n 2 1, b 3. cn g2 > 0 impl i e s   fo r  all n, c > 0 and 2 
- 

b + c a 2 > 0 .  

Hence the  resu l t :  a > 0, c > 0,  b > - c r2. This  is t h e  same as t h a t   j u s t  

found by using Lyapunov s t a b i l i t y   t h e o r y .  
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I X .  APPLICATIONS 

I n   t h i s   c h a p t e r  a number of   appl ica t ions  are eiven.  The  emphasis i n  

these   appl ica t ions  is on the  formulation  of  the  problem  in  such a way t h a t   t h e  

formal   mathematical   operat ions  yield  r igorous  mathematical   resul ts .  The f i r s t  

example shows t h a t   t h e  Lyapunov s tabi l i ty   theory  of   Chapter  V is a p p l i c a b l e   t o  

systems  of  ordinary  differential   equations.   In  the  next  examples  the  emphasis 

is placed on t h e   s e l e c t i o n  of t h e  Lyapunov Functional,  so tha t   t he   app l i ca t ion  

of well-known i n t e g r a l   i n e q u a l i t i e s   g i v e s   t h e  maximal parameter  range  for 

s t a b i l i t y  of t h e   n u l l   s o l u t i o n .  Some r e s u l t s  from  Eckhaus(6) are demonstrated 

us ing   the  Lyapunov s t a b i l i t y   t h e o r y .  The corresponding  nonlinear cases are 

given  in  Chapter X. 

Example IX-1. Consider  the  system 

jr, = x2 

; j r = A x  
2- = -2x, - 3x, 

- " 
L I L 

- X - A -[" -2 
-3 l l  

(IX-1) 

x E R2, A E L(R , R ) 2 2  - 
Obviously  the  solution " x = 0 is asymptotically  stable,   because  the  eigen - 
values  of t he   coe f f i c i en t   ma t r ix  are -1 and -2. 

Next introduce a norm: 

Then A, a bounded l inea r   ope ra to r   w i th  D(A) = R and R(A) = R , is well 2 2 - - - 
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Then take  as pos i t i ve   de f in i t e   b i l i nea r   func t iona l   V( IC ,~ )  = < ~ , y > ~  

f o r  1,y E R And t h e  Lyapunov Funct ional   v(x)  is: 2 - 

Thus 

1 2 - ;(X) = V ( A  X,X) = < A X = - x x - 3x2 2 -  ”- - ”- 1 2  

which is not even negat ive  semi-def ini te   for  a l l  x E R Hence the   inner  2 - 
product < does  not  provide  us  with a s u i t a b l e  Lyapunov Functional.  0 

2 Next consider V(2,y) = < ~ , y > ~  = <x, x,y E R , 

with - s = [  1 ’ 

- S is bounded, p o s i t i v e   d e f i n i t e  and  symmetric,  thus < *,=> 1 is equiva len t   to  

e* v(1)  = < X,X>~, moreover 0’ ” 

Then 
1 2 2 
2 -  1 1 2  - +(x) = < A  2, E>l = -2x - 3x x - 2x2 

with 

7 1 
2 - - - < x,x>o ,< < x, x> < - - < x,x> 2 - -  0 -  

Combining (IX-3) with (IX-2) g ives  

- 9 . a 2  V(X,X) 5 ;(IC) = 2V(A X, X) 5 - .191 V(X,X). 
” - ” - - ” 

Since R(I  - A) = R~ 9 -  A generates  a group  of  exponential  type 

(rt ; t E (-m,  m) 1 i n  H1 = (R2, < . , .> ) such t h a t  1 
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And t h e   o r i g i n  - x = 0, is asymptot ical ly   s table .  The s e l e c t i o n  of t h e   b i l i n e a r  

func t iona l  V ( 5 , y )  is cruc ia l   here .  

The following two examples were studied by  Eckhaus(6)  using  approxi- 

mate methods.  The l i n e a r  cases are g iven   i n   t h i s   chap te r ,   t he   non l inea r  cases 

are analyzed i n  Chapter X. 

Example IX-2. Burgers'  model to   descr ibe   tu rbulence  as s tudied by Eckhaus 

is given by 

(6) 

a u1 a u au l  

a t  a x  a x  

2 2 
1 1 

" 

u1 - x - + - - u u  = o  
1 2  

a u  

a t  R 2 +  i u l  2 1  1 - + -  u 2 d x = 0  

0 < x 21, R constant  and  boundary  conditions  ul(t,O) = u l ( t , l )  = 0. = -  

The l inear ized  system is: 

where 

a~ 
a t  - =  L u 
- 

- 

(IX-4) 

(IX-5) 

0 < x 5 1 and  boundary  conditions u ( t , O )  = u l ( t , l )  = 0. The operator 1 " - 

T Z - 1 " -  - a i n . L i s  a f o r m a l l y   s e l f - a d j o i n t   s t r o n g l y   e l l i p t i c   p a r t i a l  
a x 2  

d i f f e r e n t i a l   o p e r a t o r   f o r  R > 0. I n   o r d e r   t o   d e f i n e  L on a complete  space we 

must introduce  dis t r ibut ions.   Not ice   that   u2 of (IX-4) is independent of X, 

thus f. is  d e f i n e d   i n   t h e  Corn( [ 0,1] ) x R1 functions.  - P, to   be  introduced  next ,  

will thus  be  def ined  on  the  Hilber t   space L ( [ O , l ] )  x (R ; <o).>~), where 

< U , U > ~  = u . This  space will formally  be  indicated by L ( [0 ,1] )  ; L). 

2 1 

2  2 
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Followinp,  Chapter VII, w e  g e t   f o r  (IX-5) 

with 

(IX-6) 

f o r  f E Z? ( ( ' I ) =  Ho ( [ O , l ] ) n H  ([O,l]) x (R1 ; < O S * >  ). (V is  a closed - - 0 -  

operator   with P ( W )  L ([0,1] ; 2) and R(W) = L ([0,1] I). Hence (X-6) 2 2 - - " 

belongs   to   the  class (V-1). 

1 2 

Take as p o s i t i v e   d e f i n i t e   b i l i n e a r   f u n c t i o n a l  V(f,&): 

1 n 

The  Lyapunov Funct iona l   v ( f )  - becomes thus 

v(f) = V(f,f)  " = < f,l>o - f E V ( W )  - 
The nex t   s t ep  is t o   e v a l u a t e   $ ( f )  - = 2 < - (11 f , f >  on t h e  Ci([O,l]) funct ions:  " " 0  

1 
1 a f  

R a x  = - [ l ( - ( - $ 2 - f l ) d x + ~ f 2 ] .  2 1 2  
0 

The in t eg ra l   i nequa l i ty  (31) 

h o l d s   f o r   t h e   f i r s t  term %n the  integrand,   thus 

(IX- 7) 

! 

Thus - (rl is s t r i c t l y   d i s s i p a t i v e   f o r  

0 < R  < r 2  

97 



and R ( I  " + 0.1) =L'([O,l] ; I), hence by  Theorem V-5 t h e   n u l l   s o l u t i o n   t o  (IX-6) 

is asymptot ical ly   s table .  - OJ generates  a con t r ac t ion  semi-group {Lt;tz 0 )  i n  

L2( [0,1] ; - I) with 

l l ~ t l l o  =< e 
-at 

.2 1, E). This   condi t ion is i d e n t i c a l   t o   t h a t   o b t a i n e d  by Q = min (r- 
r e q u i r i n g   t h a t  X of L be   pos i t i ve ,   s ince  from  Eckhaus 

1 

(6) 
min 

.2 = -  
'In R (n+l) - 1 

1 
'20 R 

= -  

n = 0,1,2, ... 

Example IX-3. Next consider a second  example  from  Eckhaus : 
2 

(6) 

a u  2 2  2 a~ l a %  1 a~ + 3t- (x + J$ u -  $7 x""+- 3 x  R a x 2  2 ax 

1 
, + R 2  [ I u 2 d x ]   u = O  

0 
( 1 x 4 )  

0 _< " x 2 1, R a pos i t ive   cons tan t ,  and  boundary  conditions  u(t,O) = u ( t ,  1) = 0.  

The l inear ized  system is  given by 

( IX-9 ) 

0 < x <- 1 and  boundary  conditions  u(t,O) = u ( t , l )  = 0. T = -L i s  f o r  R > 0 

-a s t r o n g l y   e l l i p t i c   f o r m a l   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r ,  which is, however, 

a - 

not  formally  self-adjoint.  (IX-9)can again  be  formulated  in  terms of the  

o p e r a t o r   d i f f e r e n t i a l   e q u a t i o n  (V-1) by l e t t i n p :  

d f  " = - W f  

dt 1 
(IX-lo) 

with W f = -L f f o r  f E D(1J) = H , ( [ O , l l > f l  H-([fl,lJ). Take as p o s i t i v e  
3 

d e f i n i t e   b i l i n e a r   f u n c t i o n a l   V ( f , g ) :  
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Then we have to   eva lua te   aga in  V(-TJ f , f )   o n   t h e  C,([O,l]) - funct ions.  

In t eg ra t ion  by p a r t s  and making use  of t h e   i n t e g r a l   i n e q u a l i t y  (IX-7) g ives  

03 

V(L f , f )  2 -  ( r- - TR - x ) < f , f>”*  lT2 1 2 

! Thus a s u f f i c i e n t   c o n d i t i o n   f o r   t h e   a s y m p t o t i c   s t a b i l i t y  of t h e  n u l l  so lu t ion ,  

f=O,is 

o r  

0 < R  < A (1 + 2r2 -,/-. 
One can  improve  considerably on t h i s  last condi t ion as an   eva lua t ion  

2 

of the  e igenvalues  of X suggest  (see  Bckhaus(6)) by observ ing   tha t  T is 

e q u i v a l e n t   t o   t h e   s t r o n g l y   e l l i p t i c   o p e r a t o r  T as given by: e 

with 

p = exp JE x 

w = R exp JE x 

2 

2 

q = -  & - x .  2 

An inner  product , .> which i s  equ iva len t   t o  9 can now be  chosen fo r  

t h e   p o s i t i v e   d e f i n i t e   b i l i n e a r   f u n c t i o n a l   V ( f , g ) :  

w 

It can   eas i ly   be  checked t h a t  W corresponding  to T is se l f -ad jo in t   wi th  

r e s p e c t   t o  < * s o >  Evaluation of V(-Wef,f) = <-Id f , f >   o n   t h e  Ci([O,l]) - 
func t ions   g ives  

e’ e’ 

W* e w 
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I 

2 
The i n t e g r a l   i n e q u a l i t y  (IX-7) can now be   app l i ed   t o  e f ,  ra ther   than 

t o  f .  Subs t i tu t ion   g ives :  

V(-Tef,f) _< -( - - - R ) < f , f >  W . 7T2 1 

The s u f f i c i e n t   c o n d i t i o n   f o r   t h e   a s y m p t o t i c   s t a b i l i t y   o f   t h e   n u l l   s o l u t i o n   t o  

(IX-10) becomes then 

0 < R  < n4. 

A s  should  be  expected,   th is   condi t ion is i d e n t i c a l   t o   t h a t  found by evaluating 

the  eigenvalues of T. The choice  of   bi l inear   funct ional   V(f ,g)  is thus  seen 

to   be  very  important   for   the  determinat ion of a maximal parameter  range  for 

asymptot ic   s tab i l i ty .  The  equivalence  of < * s o >  and < O S . >  i n d i c a t e s   t h a t  

t h e   s t a b i l i t y   p r o p e r t i e s   o f  (IX-10) are t h e  same for   both.  The s e l e c t i o n  of 

0 W 

t h e   b i l i n e a r   f u n c t i o n a l  is also  important ,  when dealing  with  nonlinear  systems. 

T h i s  w i l l  be shown i n  Chapter X. 

The following  example shows the   e f fec t   o f   the   e l imina t ion  of t he  

h ighes t   o rder  odd der iva t ive   o f  T on the  parameter   range  for  which the  system 

is s t a b l e ,  by introducing a T . 
Example IX-4. Consider  the  system 

e 

(IX-11) 

0 2 x 5 1, R > 0 and  boundary conditions 
" 

u(t,O) = u ( t , l )  = - 3 u  -2  1 a x  I x 4  x= l  

- = 0. 
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T = -L i s  a s t r o n g l y   e l l i p t i c   f o r m a l  par t ia l  d i f f e r e n t i a l   o p e r a t o r .  (IX-11) 

can be formaulated as (V-1) by def in ing  

t J i t 1 1  I,! f = -L f f o r  f E 0 (N) = H o ( [ O , l l ) f l  I! ([0,11). As V(f ,g)  can  be 

taken: 

2 4 

V(f,g) = < f , ! P O  f , g  E L2([0,13L 

Then an  evaluat ion of V(-TJ f,f) on the  C; ( [ f l , l ] )  - func t ions   r e su l t s   i n  a 

su f f i c i en t   cond i t ion   fo r   a sympto t i c   s t ab i l i t y  of t he   so lu t ion  f = O  of (IX-12): 

0 < R  "2. 4 
5 

However, T is equiva len t   to  

1 a 2  a 2  l a  T = + -  - ( p ( x )  7) +L a-+"+- 1 
e w(x> a x2 a x  ;)x2 f i a x  4 

LJ;; x 
with  p(x) = e 2 

2 2  LsR X 
w(x) = R e 

T is a l s o   s t r o n g l y   e l l i p t i c .  The bi l inear   funct ional   V(f ,g)   should now be 

taken as: 

e 

V(f,g) = < f,w(x)g >o = < f ,g'w f , g  E L2([0 ,11)  

c* 9 * >  and <* 9 .> are again  equivalent  . Evaluation  of V (-lJef ,f) = <-lJef ,f 

shows t h a t   t h e   s u f f i c i e n t   c o n d i t i o n   f o r   a s y m p t o t i c   s t a b i l i t y  of t h e   n u l l  

s o l u t i o n   t o  (IX-12) can  be  extended  to 

0 w 

0 c R <-r2. 16 
15 s i  4 X 1 6  x 

The i n t e g r a l   i n e q u a l i t y  (IX-7) is here   appl ied   to  e af and e f 

r a the r   t han   t o  and f respec t ive ly .  

4 
a x  

a f  

101 

, 



The  above  examples i l l u s t r a t e   c l e a r l y   t h e   a p p l i c a t i o n  of t h e   s t a b i l i t y  

theory  developed  here. The importance  of  the  equivalent  inner  products i s  

demonstrated  for  the  determination of maximal parameter  ranges  for  asymptotic 

s t a b i l i t y  of the   nu l l   so lu t ions .   In   each  case t h e   s t a b i l i t y  problem  has  been 

formulated i n  such a way t h a t  a l l  mathematical  operations  can  be  formally 

ca r r i ed   ou t  and these  formal   operat ions are r i g o r o u s l y   j u s t i f i e d .  
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X. SOME NONLINEAR  PARTIAL  DIFFERENTIAL  EQUATIONS 

The important  advantage of  Lyapunov's Direct Method over  approximate 

methods i n  t h e   s t a b i l i t y   a n a l y s i s  of f in i te   d imens iona l   sys tems of nonl inear  

o rd ina ry   d i f f e ren t i a l   equa t ions  is t h a t   n o n l i n e a r i t i e s  can be  introduced eas- 

i l y  and without   lack of mathematical   r igor .   In   appl icat ions,   the  main 

. emphasis Cs on  the  so-called "Lur 'e type"  nonl inear i t ies ,   f requent ly  

encountered i n  cont ro l   sys tem  appl ica t ions .   S imi la r   nonl inear i t ies  are found 

i n  such  distributed  parameter  systems as nuclear   reactor   systems and  quantum 

physics . 
Here aga in   the  main  problem is  t h a t  of t he   ex i s t ence  and  uniqueness 

of t he   so lu t ions ,   t hus  a problem i n   t h e   t h e o r y  of p a r t i a l   d i f f e r e n t i a l  equa- 

t ions   i t se l f .   In   the   fo l lowing   examples ,   the   ex is tence   o f   so lu t ions  is not 

r igorously  es tabl ished;   instead  the  fol lowing  assumptions are made: 

1. The so lu t ions   t o   t he   l i nea r i zed   sys t em  ex i s t  and  belong t o  a 

Hi lber t   space  H. 

2. The l inear ized  system is asymptot ica l ly   s tab le .  

3. The so lu t ions   to   the   nonl inear   sys tem  ex is t  and  belong f o r  a l l  

t - > 0 t o  H. - 
The suf f ic ien t   condi t ions   for   s tab i l i ty   can   then   be   based  on estimates 

for   the   nonl inear  terms i n   t h e   d e r i v a t i v e  of t he  Lyapunov Functional.  

Example X-1. Consider f i r s t   t h e   n o n - l i n e a r  case of Example IX-2 and  suppress 

0 _< x 5 1 and  boundary  conditions  u(t,O) = u ( t , l )  = 0. And l e t  R be a posi- 

t i ve   cons t an t .  The l inear ized  system is a s y m p t o t i c a l l y   s t a b l e   f o r  

" 
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Define (X-1) again  on a complete  space,  which is assumed t o  be the   space   fo r  

the  l inear ized  system,  then 

-e: d f  - W f  
d t  

with W f = - L f f o r  f s u f f i c i e n t l y  smooth.  The  domain  of t he   l i nea r i zed  

d i f f e r e n t i a l   o p e r a t o r  is taken as D(W) = Ho([O,l])r) H ( [O, l ] ) .  1 2 

Take as b i l inear   func t iona l   V(f ,g) :  

V(f,g) = < f , P O  f , g  E L 2 U O , l 1 ) .  

Then the re   r ema ins   t o   eva lua te   s ( f )  = 2< L f , f >  on the  C,"([O,l])  functions, 

thus 

0 

1 2 
< L f , f > O  = - /{-f2 - a f 2  f 'f + f - + R(  I d x)f 3d x. f E D(W). 2 

0 3 x   a x  0 

In t eg ra t ion  by p a r t s  and s u b s t i t u t i o n  of the  boundary  conditions  gives: 

< L f , f > O  = - I{- l 2  f + {y) f 2  + R ( d d f 2 )  d x f E Dm). 
0 0 1 

.L 

Application of t h e   i n t e g r a l   i n e q u a l i t y  (IX-7), t h e   f a c t   t h a t   f 2  dx 2 0 f o r  
0 

- 
f E D(N) and R > 0 gives:  

7f2 < L f , f > o  =< - ( p, - 1 )  < f , f > O  f E D (W) . 
Thus the  modified  nonlinear  system  has,  under  the  stated  assumptions,  an 

a s y m p t o t i c a l l y   s t a b l e   n u l l   s o l u t i o n   f o r  

0 < R < r2. 

T h i s   v e r i f i e s   t h e   r e s u l t s   o b t a i n e d  by  Eckhaus . ( 6 )  

I n  (33) i t  is  shown t h a t  a similar r e s u l t  is obta ined   i f   the  - a u2 
a t  

is not  syppressed. 

Example X-2. Next consider   the  nonl inear  case of Example IX-3. The system 

is given by 
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au = 2 2  2 3 u  1 2 %  1 3 u  2 2  

’3t sn fi a x  1: ? x 2  * a x  c) 

1 
( x   + - ) u + - x ” l - -  - - -  ” I? [I u2 d x]  u = I. u (21-2) 

0 - < x _< 1, boundary  conditions  u(t,O) = u ( t , l )  = 0 and R a pos i t ive   cons tan t .  

The l inear ized  system is asympto t i ca l ly   s t ab le   fo r  0 < R < IT . 
“ 

4 

The nex t   s t ep  is to   i n t roduce  a formulation  of (X-2) on a complete 

space: 

- = -  d f  W f  
d t  (s- 3) 

with I.? f = - I, E f o r  f s u f f i c i e n t l y  smooth. The domain of t h e   l i n e a r i z e d  

d i f f e r e n t i a l   o p e r a t o r  is taken as D(W) = 11,([0,l])fl E2([0,1]) .  

The b i l i n e a r   f u n c t i o n a l  V(f ,g) will be  taken as 

1 

V(f,g) = f,’cJ(x) P o  = < f , € p I q  f , g  8 L2([0,11) 

with w(x) = I! exp 6 x . For t h e   l i n e a r   p a r t  of I.? we  must s u b s t i t u t e   t h e  2 

equ iva len t   d i f f e ren t i a l   ope ra to r  

where 

p = exp fi x 2 

q =  
-2 2 

Evaluation of V (L, f , f ) on t h e  C”( [ 0,1]  )-functions  gives 0 

V(L f , f )  = - 
0 

+yR 1 e f i x 2  f -   a f 2 + ,  e fi x2 [ /If2 d x] f 2  d x. 
a x  0 

I n t e g r a t i o n  by p a r t s ,   s u b s t i t u t i o n  of t h e  boundary  conditions  and  the 
1, 

i nequa l i ty  (IX-7) together   with  the fac t  t h a t  f d x > 0 and R > 0 give z - - 
0 
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Since 0 " < x < 1, L w i l l  c e r t a i n l y   b e   s t r i c t l y   d i s s i p a t i v e   w i t h   r e s p e c t   t o  
" 

<* f o r  w 

s t a b l e   f o r  a l l  i n i t i a l   d i s t r u b a n c e s  bounded  by 

z 
max If I < 5 ( & - 1) f o r  a l l  f s u f f i c i e n t l y  smooth. 

X E : [ O , l I  

T h i s   r e s u l t  is again similar t o   t h a t   o b t a i n e d  by Eckhaus"),  however, 

the  use  of Lyapunov s t ab i l i t y   t heo ry   enab le s   one   t o   ob ta in  i t  i n  a s t r a igh t -  

forward way, without making many complicated  calculat ions as is  the  case when 

using  asymptotic  expansions. 

The assumptions made concerning  the  existence of so lu t ions  are not  

more s t r ingent   than  those made as j u s t i f i c a t i o n   f o r   t h e   u s e  of approximate 

methods. However, the  necessi ty   of  a self-contained Lyapunov s t a b i l i t y   t h e o r y  

f o r   c e r t a i n  classes of non l inea r   pa r t i a l   d i f f e ren t i a l   equa t ions   r ema ins .  To 

what ex ten t   the   theory  of monotone opera tors  (22) enables  an  extension  of  the 

s t ab i l i t y   t heo ry ,   deve loped   he re   fo r   d i s s ipa t ive   ope ra to r s ,   t o   ce r t a in  classes 

of nonl inear   operators  i s  l e f t  as a sugEest ion  for   fur ther   research.  
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X I .  CONCLUSIONS AND SUGGESTED  FURTHER RESEARCH 

A. Conclusions 

The ob jec t ive  of t h i s   r e s e a r c h  is t o   e s t a b l i s h  a Lyapunov s t a b i l i t y  

t h e o r y   f o r   s o l u t i o n s   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  on a mathematically 

rigorous  basis.   Because  of  the complex  mathematical  nature of p a r t i a l  

d i f f e ren t i a l   equa t ions ,  a type  of   synthesis  method has  been  developed. 

Lyapunov's Direct Method fo r   o rd ina ry   d i f f e ren t i a l   equa t ions  is 

genera l ized   to  a class of opera tor   d i f fe ren t ia l   equa t ions .   This   genera l iza-  

t i o n  is based  on  the  fundamental   solution  structure of groups  and  semi-groups, 

which is n o t   r e s t r i c t e d   t o   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  

Once t h e   s t a b i l i t y   p r o p e r t i e s  are formula ted   in  terms of the  group 

and  semi-group s t r u c t u r e ,  i t  becomes p o s s i b l e   t o  impose the   cond i t ions   fo r  

t h e i r   s t a b i l i t y  on the  corresponding  inf ini tes imal   generators .   This   enables  

the  formulat ion of a Lyapunov s t ab i l i t y   t heo ry ,   ana logous   t o  Lyapunov's 

Direct Piethod f o r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s ,   f o r  a l a r g e  class of 

opera tor   d i f fe ren t ia l   equa t ions- -spec i f ica l ly ,   for   those  bounded  and  unbounded 

operators  which are the  inf ini tes imal   generators   of   contract ion  groups  and 

semi-groups.  The c o n d i t i o n s   f o r   s t a b i l i t y  a n d   a s y m p t o t i c   s t a b i l i t y   f o r   t h i s  

class of operators  is based  on the   Hi lber t   space   theory   o f   d i ss ipa t ive   opera-  

t o r s .  

The Hi lbe r t   space   s t ruc tu re ,   a s soc ia t ed   w i th   d i s s ipa t ive   ope ra to r s   l ed  

to   t he   p ivo ta l   no t ion  of equivalent  inner  products,   which  enables  one  to 

relate d i s s i p a t i v i t y   i n  a s a t i s f a c t o r y  way t o   s t a b i l i t y ,  a norm property. 

Suf f ic ien t   condi t ions  are e s t a b l i s h e d   f o r   t h e   s t a b i l i t y  and  asymptotic 

s t a b i l i t y  of semi-groups  and for   the   nu l l   so lu t ion   of   the   cor responding  

opera tor   d i f fe ren t ia l   equa t ions .   For   g roups   th i s  i s  extended to  necessarv  and 
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s u f f i c i e n t   c o n d i t i o n s   f o r   s t a b i l i t y  and   asymptot ic   s tab i l i ty ,   respec t ive ly .  

The next  development is t h a t  o f   d e f i n i n g   p a r t i a l   d i f f e r e n t i a l  equa- 

t i o n s   i n  terms of   the   genera l   opera tor   d i f fe ren t ia l   equa t ion .   For   th i s  pur- 

pose a f o r m a l   l i n e a r   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  is introduced. The formal 

p a r t i a l   d i f f e r e n t i a l   o p e r a t o r  is extended  to   an  operator   def ined  in  a complete 

space by in t roducing   d i s t r ibu t ions .   This  is  followed by assoc ia t ing   the  

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   w i t h  a boundary  value  problen.  In  order  to 

ma in ta in   t he   gene ra l   ope ra to r   d i f f e ren t i a l   equa t ion   s t ruc tu re   t h i s  is only 

c a r r i e d   o u t   f o r   t h e  class o f   s t r o n g l y   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   o p e r a t o r s  

s a t i s f y i n g   t h e   D i r i c h l e t  boundary  conditions.  Subsequently, a formulation of 

a class of  evolution  equations and a class of wave equations is obtained  in  

terms of the   gene ra l   ope ra to r   d i f f e ren t i a l   equa t ion .  

These two classes of  equations are  very  important   in   physics  and 

engineer ing  appl icat ions,  and the  formulat ion as o p e r a t o r   d i f f e r e n t i a l  equa- 

t ions  enables   us   to   apply  the  developed Lyapunov s t a b i l i t y   t h e o r v   f o r  a 

r igorous   de te rmina t ion   of   the i r   s tab i l i ty   p roper t ies .  

The r e l a t i o n  between  the  s tabi l i ty   theory and the  Eraup and semi- 

group s t ruc ture   au tomat ica l ly   g ives   the   ex is tence  and unicpeness  properties 

f o r   t h e   s o l u t i o n s  of   these  equat ions.   For   the  evolut ion  equat ion a general  

Lyapunov Funct ional  is formulated  in  terms of the  inner  product  of  the  Hilbert  

space on  which the   opera tor  is defined.  Subsequent  applications  clearly 

reveal  the  importance  of  the  notion  of  equivalent  inner  products and i t s  

consequences fo r   ob ta in ing  maximal mrameter r a n g e s   f o r   s t a b i l i t y .  

For a class of wave equations a Lyapunov Functional is developed, 

which no t   on ly   c l ea r ly   g ives   cond i t ions   fo r   s t ab i l i t y  and a s y . p t o t i c  

s t a b i l i t y  of t he   nu l l   so lu t ion ,   bu t   a l so   exh ib i t s   t he   g roup   s t ruc tu re  of the  
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solut ions.  

I n  a f i n a l   c h a p t e r   t h e   s t a b i l i t y   p r o p e r t i e s  of some nonlinear  systems 

are formally  invest igated.   Except   for   these l as t  r e s u l t s ,   t h e  emphasis is on 

I a mathematically  rigorous  approach  to  the  important  problem  of  stability  of 

solut ions  to   par t ia l   d i f ferent ia l   equat ions.   That   such  an  approach  gives  

o n l y   r e s u l t s   f o r  a l imi t ed  class of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  i s  n o t  

surpr is ing.  The t h e o r y   o f   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   i t s e l f  is a f i e l d  

of extensive  research  in   mathematics  and i t  is  fo r seen   t ha t  many of i ts  

developments   might   f ind   appl ica t ions   in   s tab i l i ty   s tud ies .  Some suggestions 

fo r   fu r the r   r e sea rch  are g iven   in   the   next   sec t ion .  

B. Suggested  Further  Research 

F u t u r e   r e s e a r c h   i n   t h e   s t a b i l i t y   p r o p e r t i e s  of s o l u t i o n s   t o  partial  

d i f f e ren t i a l   equa t ions   can   p rog res s   i n  many d i r ec t ions .  Along t h e   l i n e s  of 

t he   s t ab i l i t y   t heo ry   deve loped   i n   t h i s   r e sea rch  i t  must  be  pointed  out  that  

only a small class of l i nea r   t ime- inva r i an t   pa r t i a l   d i f f e ren t i a l   equa t ions  

have  been  formulated i n  terms of the   genera l   opera tor   d i f fe ren-  

t i a l  equation. The p o s s i b i l i t i e s  of   extending  this  class must be explored, 

even  though t h e  ri:id s t ructure   might   have i t s  l imi t a t ions .  

There i s  a l s o  a need f o r   i n v e s t i g a t i n g   t h e   p o s s i b i l i t i e s  of extending 

the   deve loped   s tab i l i ty   theory   to those l inear   t ime-vary ing   opera tor   d i f fe ren-  

t i a l  equations,  which  might  possibly  generate two parameter  groups  and semi- 

groups. 

The po ten t i a l   u se   o f  Lyapunov s t a b i l i t y   t h e o r y   t o   e s t a b l i s h   r i g o r o u s l y  

t h e   s t a b i l i t y   c o n d i t i o n s  of nonl inear   sys tems  jus t i f ies  a con t inued   e f fo r t   t o  

ex tend   t he   r e su l t s   fo r   l i nea r   sys t ems .  The na tura l   ex tens ion   of   l inear  
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d i s spa t ive   ope ra to r s   t o   t he   non l inea r  case seem to   be   the  monotone operators(22)  

The suggestion is tha t   there   might   ex is t  a naut ra l   ex tens ion  of t h e   s t a b i l i t y  

t h e o r y   f o r   l i n e a r   d i s s i p a t i v e   o p e r a t o r s   t o  one f o r  monotone operators .  

The s tab i l i ty   theory   deve loped  is based on the   Hi lber t   space   s t ruc ture .  

The s t a b i l i t y   r e s u l t s  are a l l  wi th   r e spec t   t o  norms induced by an  inner  pro- 

duct.   This  provides no l imi t a t ion   fo r   f i n i t e   d imens iona l   sys t ems ,   s ince  a l l  

norms are equivalant.  The quest ion must then  be  ra ised as t o  how f a r   t h i s  

equivalence of norm pr inc ip le   can   be   car r ied   th rough  for   in f in i te   d imens iona l  

systems. I n   o t h e r  words,  which  other norms are equivalent  to  the  one  induced 

by an  inner  product? Is the re  a Banach space   s t ruc ture   o ther   than   the  

Hi lbe r t   spaces   t ha t  encompasses more equivalent  norms  and hence a broader 

s t a b i l i t y   a n a l y s i s ?  

The s t a b i l i t y   p r o p e r t i e s   o b t a i n e d  are genera l ly   those   wi th   respec t   to  

t he  L -norm. The e x t e n t   t o  which th i s   k ind  of s t a b i l i t y   i m p l i e s   s t a b i l i t y   i n  

t he   c l a s s i ca l   s ense ,  Le., wi th   r e spec t   t o  a Cp-norm should  be  investigated. 

This  is the   d i r ec t ion   i nd ica t ed  by Conjecture V I I - 1 .  Sobolev's Imbedding 

Theorems w i l l  p lay  an  important   role   in   such  an  evaluat ion.  

2 

Even though p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   a p p e a r   i n  many engineering 

appl ica t ions  it is plain  that   the   suggested  research  problems are very 

mathematically  orientated.   Unfortunately,   the  complexity  of  partial   differen- 

t i a l  equat ions seems t o   r e q u i r e  a highly  specialized  mathematical  background 

in   func t iona l   ana lys i s ,   topology,   genera l ized   func t ions ,  etc. It is hoped 

t h a t   t h i s  will no t   de t e r   o the r s  from invest igat ing  the  very  important  problem 

of t h e   s t a b i l i t y  of s o l u t i o n s   t o   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   i n   t h e  

fu ture .  
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PART I1 

CONTRACTION GROUPS ANL, EQUIVALENT NORMS 

William G. Vogt Martin M. Eisen 
Department  of Electrical Engineering Department  of  Mathematics 
Universi ty   of   Pi t tsburgh Universi ty  of P i t t sburgh  

Gabe R. Buis 
Department  of Electrical Engineering 
Universi ty   of   Pi t tsburgh 

ABSTRACT 

I n   t h i s   r e p o r t ,   n e c e s s a r y  and su f f i c i en t   cond i t ions  are obta ined   for  

a c losed   l i nea r   ope ra to r  A t o   g e n e r a t e  a group { Tt; - < t c -1 i n  a 

Banach space  such  that  { Tt; t 2 0) is a negat ive   cont rac t ive  semi-group 

wi th   r e spec t   t o  an equivalent  norm. These r e s u l t s  are r e f ined   t o   t he  case 

of a group in   Hi lber t   space .  

._. 

114 



5 -  It is w e l l  known t h a t  some systems of d i f fe ren t ia l   equa t ions ,   bo th  

ordinary and par t ia l ,   can  be  reduced  to   the  form 

(1) 
dx - AX d t  (XED (A) 

where A is a l inear   opera tor   wi th  domain, D(A), and  range, ??(A), bo th   i n  a 

real  B-space, X. I f  A is the   in f in i tes imal   genera tor  of a semi-group 

{ T,; t 2 - 0) = C L(X,X) of c l a s s  (C,), a s o l u t i o n   t o  (1) s t a r t i n g  a t  t = 0 from 

x a x O d ( A )  is given by x(t; xo) = Ttxo f o r  t 1: 0 with  x(0; xo) = x0(l) .  If 

A is the   in f in i tes imal   genera tor   o f  a group,  then  the  above  solution is v a l i d  

f o r  - Q) < t < Q). 
Criteria i n  terms of the   opera tor  A ( i n   o t h e r  words, p rope r t i e s  of t h e  

c o e f f i c i e n t s  of the  or iginal   system  of   different ia l   equat ions)   which would 

enable   one  to   deduce  the  exis tence as well as asymptotic  behavior of so lu t ions  

are des i rab le .  One such   r e su l t   a l r eady   ex i s t s   fo r  A t o   b e   t h e   i n f i n i t e s i m a l  

generator of a semi-group (Theorem 1). The objec t  of t h i s   r e p o r t  is t o   r e f i n e  

these   r e su l t s   t o   g roups  of cer ta in   types .  The  deve1opmen.t is i n  terms of 

r e a l  B-spaces but   can  easi ly   be  extended  to  complex spaces. 

DEFINITION 1 

L e t  iT 1 be a semi-group of bounded l i n e a r   o p e r a t o r s   i n  a B-space. I f  

I ITt I I ,< N then  the semi-group is s a i d   t o   b e  equibounded; i f  N = 1 then {Tt) 

is ca l l ed  a cont rac t ion  semi-group. I f   t h e r e   e x i s t   f i n i t e  M > 0 and B > 0 

such  that  I ITtI I 2 MeWBt then ITt} is sa id   t o   be  a negat ive semi-group; i f  ' 

M = 1 t h e  semi-group is ca l led   nega t ive   cont rac t ive .  

t 

An important  property of  B-spaces i s  t h a t  a semi-scalar product [.,.I 

can  be  defined on any  B-space  such tha t   [x ,y]  = f  (x)  where  f is a l i n e a r  

cont inuous  funct ional   such  that  f  (y) = 1 lyl I 
Y Y 

2 (2) 
Y 
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DEFINITION 2 

L e t  X be a B-space with norm I I I 1 and l e t  [ . , . 3  be  a semi-scalar product 

on X. Then t h e  semi-scalar product [ . , . ] is sa id   t o   be   equ iva len t   t o  . [ . , . 3 

on X i f f  I I I I and I I I I are equivalent  norms on X. 

1 

The class of   operators  A needed for   the   s ta tement  of o u r   r e s u l t s  is 

desc r ibed   i n   t he   fo l lowing   de f in i t i on  . 
DEFINITION 3 

L e t  A be a l i nea r   ope ra to r   w i th  D(A) and ??(A) conta ined   in  a real B-space X. 

A is ca l l ed   d i s s ipa t ive   w i th   r e spec t   t o   t he  semi-scalar product [.,.I i f  

[Ax, x] 5 - 0 whenever x d ( A )  and s t r ic t ly  d i s s i p a t i v e   i f   t h e r e   e x i s t s  a y > 0 

such  that  

(1) 

(2) [AX, XI 2 - y [x, XI = - y l ~ x l  l 2  ( ~ E D ( A ) )  

The fo l lowing   r e su l t s  are due t o  Lumer and P h i l l i p s  (2) . 
THEOREM 1 

L e t  A be a l inea r   ope ra to r   w i th  D(A) and  ??(A)  contained i n  a real B-space X 

and  such  that D(A) is dense i n  X. Then A generates  a cont rac t ion  semi-group 

i n  X i f f  A is d iss ipa t ive   (wi th   respec t   to  any semi-scalar product)  and 

R ( 1  - A) = X. 

COROLLARY 

I f  A i s  a densely  def ined  c losed  l inear   operator   such  that  D(A) and  ??(A) are 

conta ined   in  a B-space X and i f  A and i ts  dual   operator  A' are both  diss ipa-  

tive, then A generates  a cont rac t ion  semi-group. 

In   t he   cour se  of the  proof  of Theorem 1 it is deduced tha t   t he   r e so l -  

vent  operator  of A, R(X; A), e x i s t s   f o r  a l l  X > 0 and s a t i s f i e s   t h e  estimate 

1 IR(X; A) I I = < X-'. From t h i s   f a c t  w e  can  deduce a u s e f u l   c r i t e r i o n   f o r  (T 1 t 
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t o   b e  a group  and the   so lu t ion  T x of (1) t o  approach   the   nu l l   so lu t ion  as t o  
t + Q). We begin by considering  semi-groups. 

THEOREM 1' 

L e t  A be a l inea r   ope ra to r   w i th  D(A) and R(A) b o t h   i n  a real  B-space X such 

t h a t  D(A) is dense i n  X. Then A generates  a negat ive   cont rac t ive  semi-group 

i n  X i f f  A is s t r i c t l y   d i s s i p a t i v e  and R(I(1 - y) - A) = X where y .is t h e  

cons tan t   appear ing   in  (2).  

PROOF 

Apply Theorem 1 t o   t h e   d i s s i p a t i v e   o p e r a t o r  B = A + yI. The r e su l t   fo l lows  

- 
upon no t ing   t ha t  B generates  {St; t 2 0) ' i f f  St = eYtTt where {T,) is 

generated  by A. 

From the  remark  preceding Theorem 1' it fo l lows   tha t  R(p; A) e x i s t s  for  

a l l  1.1 > -y and I IR(p;A) I I 2 (p + y)-l. The co ro l l a ry  of Theorem 1 can  a l so  

be   ex tended   t o   s t r i c t ly   d i s s ipa t ive   ope ra to r s .  

LEMMA 1 

L e t  A be   t he   i n f in i t e s ima l   gene ra to r  of an  equibounded  (negative)  semi-group 

{Tt; t 3: > 0) i n  a real B-space (X, 1 I . [ I 1) . Then the re   ex i s t s   an   equ iva len t  

semi-scalar product, [ . , .] inducing  an  equivalent norm 1 I I I w i t h   r e s p e c t   t o  

which A is ( s t r i c t l y )   d i s s i p a t i v e .  

PROOF 

By hypothesis I ITt I [ 2 Memat where a 2 - 0 is a constant  and  the  constant 11 may 

be   t aken   to   be  M > 1. If w e  set S = e T, t h e n  {St; t 2 0 1 is a semi-group 

s a t i s f y i n g  I [St  I I l  2 M. L e t  XE.X and  define I I I [ , by 

2 

- 
a t  

t 
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I n  (3 ) ,  it is  shown t h a t  

By the  remark  following  Definit ion 1, t h e r e   e x i s t s  a semi-scalar product [. , . I  

cons is ten t   wi th  I I . I I , such  that ,  by  Theorems 1 and 1' , 

This  proves Lemma 1 and e s t ab l i shes  a s t a r t i n g   p o i n t   f o r   g r o u p s   i n  B-spaces, 

and as a s p e c i a l  case, Hilber t   spaces .  

THEOREM 2 

Let  A be a linear operator  w i t h  Q(A) and R(A) both  contained  in  a real B-space 

(X, I I I I 1) such  that  D(A) is d e n s e   i n  X. Then A generates  a group 

{Tt; - < t < -1 i n  X such  that  iTt; t 2 0) is a negat ive   cont rac t ive  semi- 

group  with  respect   to   an  equivalent  norm 1 1 . 1  1 i f f  

( 6 )  - 6 11x1 l 2  =< [Ax,  x1 - ,< - Yl 1x1 I ( XEQ (A) 1 

where > 6 2 y >O and [. , .I  is  an equivalent  semi-scalar  product  consistent 

with I I I I, and 

2 

( 7) R ( I ( 1  - y) - A) x= X, R(I(1  + 6) + A) X. 

PROOF 

Suppose t h a t  (6) and (7) are va l id .  Then B = A + yI and C = -A - 61 are 

d i s s ipa t ive .  As i n   t he   p roo f  of  Theorem 1' it fo l lows   tha t  ' $,; t 2 0 )  is  a 

negat ive   cont rac t ive  semi-group.  Moreover R(p; A) exis ts  f o r  a l l  p > -y and 

I IR(p; A) I I 2 (p i- y)-'. Simi lar ly  R(p; A) e x i s t s   f o r  a l l  p <-6 and 

I lR(p; A) I I =< ( l p l  -ti)-'. These last  two conditions  imply  that  A is a l s o   t h e  

infinitesimal generator  of a group . ( 1) 
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' I  

Conversely  suppose  that A generates  a group  such  that { T,; t 2 0) is 

a negat ive   cont rac t ive  semi-group wi th   r e spec t   t o  I I I I t h a t  is, I ITt 1 I ,< e - B t  
,( t 2 0) where B > 0. It is known t h a t   f o r  a group I IT;' I 1 2 Meat, where M 2 1 

and a can  be  chosen  such  that  a 2 f3 ('I. Define  St = Tt e and def ine  I I 1 l2 
as i n  (3) but   using 1 1 * 1 1  on t h e   r i g h t  of (3 ) .  Then l l S t l 1 2  2 1 and 1 1 * 1 1 2  is 

equ iva len t   t o  I I I I and so equ iva len t   t o   t he   o r ig ina l  norm. It follo1-7~  from 

-1 -at 

(5) that   [Stx - x,x] 6 0 and so upon d iv id ing  by t and l e t t i n g  t j .  0 w e  have 

[(- A - aI)x, x], 2 0. 
This yields   an  equivalent  semi-scalar product  and  the l e f t  s i d e  of inequa l i ty  

( 6 )  with 6 = a. To show t h a t   t h e   r i g h t   s i d e  is a lso   va l id   cons ider  

Since 

I 

Hence (8) y i e l d s  

. [Tse x-x,x] < 0 BS 
2 =  

which in   t u rn   imp l i e s   t he   r i gh t   s ide  of (6) with yq3. 
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Fina l ly  (7) follows from Theorem 1 app l i ed   t o   t he   d i s s ipa t ive   ope ra to r s  

Tmteat(with r e s p e c t   t o  I I I I 2) and T t eBt (with  respect   to  I I I I 1> 

COROLLARY 

I f  A is a dense ly   def ined   c losed   l inear   opera tor   such   tha t  D(A) and R(A) are 

both   conta ined   in  a B-space X and i f  A and its dual   opera tor  A' s a t i s f y  ( h ) ,  

then A generates  a group  such t h a t  {Tt; t 2 - 0) is a negat ive   cont rac t ive  semi- 

group. 

Theorem 2 can  be  strengthened in  Hi lbe r t  spaces so t h a t  i t  ho lds   fo r  

scalar products.  The proof is no t  a s t ra ight forward   appl ica t ion  of Theorem 

2. The d i f f i c u l t y  lies i n   t h e   f a c t   t h a t   i f  (H, (.,.)) is a Hilber t   space  with 

scalar product (. , .) then  H-with  an  equivlanet  nom is  no t   necessa r i ly  a 

Hilbert  space.  For  example, a Euclidean  2-space (X, I I I I ) with  

+ x is a Hilber t   space   whi le  (X, I I I I 1) where 2 I I (x,,x,) I I = x1 2 

1 !(xl,  x2) I I l  = lxll + /.,I, is no t  a Hilber t   space.  

We requi re   the   fo l lowing  lemma. 

LEMMA 2 

L e t  (H,  (. , .)) be  a real Hi lber t   space  and (Tt ; t 2 0) a semi-group on H with 

in f in i t e s ima l   gene ra to r  A; then 

l i m  t ( (TtxS  Ttx) - (x ,x))  = 2 (Ax,x)  (x&D(A)). 
t+O+ 

-1 

PROOF 

The r e su l t   fo l lows  from t h e   i d e n t i t y  

- 

THEOREM 3 

Theorem 2 is v a l i d   f o r  (H, (.,.)) a real Hi lber t   space  and [ . , . I  an  equivalent 
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sca la r   p roduct   wi th  [x,x] = I Ix I I and (x,x) = I 1x1 I . 
PROOF 

It is only necessa ry   t o   p rove   t ha t   i f  A generates  a group  such  that  iT t ;t 2 0 )  

is  a negat ive semi-group w i t h   r e s p e c t   t o  I I I I 1s then  an  equatlon  of  the  form 

(6) i s  valid  where I . , . ]  i s  an  equivalent   scalar   product .   Define [ . , . I  by 

2 2 

- 

By hypothesis , I I Tt 1 I 2 Me'B (t 2 (1), where B > 0 and M 2 - 1; hence 

Since  {Tt) i s  a group,  there exist constants  a 2 - B and l / k  2 - 1 such  that  

follows from (9) t h a t  

We leave i t  t o   t h e  reader t o   v e r i f y   t h a t  I . , . ]  i s  a scalar product. The 

equivalence of t he  two scalar products  follows  from  (10)  and  (11). 

To show t h a t  an  equation of t h e  form (6) is v a l i d  w e  consider 

n n 
ITt x ,  Ttx] - [x, x]  = l i m [  1 (TsTtx,  TsTtx)ds - 1 (Tsx,Tsx)ds] 

" 

n- o 0 

i 

i 

t 
=I - /(Tsx,  Tsx)ds, ( t  > 0). 

0 

This  las t  equa l i ty  and Lemma 1 imply  that  

(12) 2 k ,  X I  = - 11x1 I ,  2 (XED (A) ) 

Equations (10) , (11) and (12) y i e l d  (6) with y = B/M and 6 = a /k  . 2 2 
f 
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